期刊文献+

自放电修正的锂动力电池SCKF-STF的SOC估算策略 被引量:9

Research on state of charge estimation of Li-ion battery based on SCKF-STF
下载PDF
导出
摘要 为了准确估算EV用锂动力电池的荷电状态,利用Map图法对电池自放电电流进行建模,通过自放电模型得到静置状态下电池自放电电流数值,通过电流时间累积得到静置状态下电池SOC的衰减数值,对电池SOC的初值进行了修正,分析了锂动力电池等效电路模型的不确定性因素,利用EKF与SCKF-STF算法对低温及常温下电池模拟工况进行了实验验证以及对比分析。实验结果表明,SCKF-STF算法能够很好的消除模型不确定性所带来的影响,低温下和常温下算法SOC估算误差比EKF算法分别提升了0.53%和3.8%。 In order to accurately estimate Lithium power battery SOC (state of charge) used on electric vehicle, the battery self-discharge current model was built by using the Map diagram. Resting battery self- discharge current values were obtained through self-discharge model. The attenuation values of resting battery SOC in current working conditions were obtained through current and time integral. The bat- tery SOC initial values were corrected, and uncertainties of lithium battery equivalent circuit model were analyzed. Experimental verification and comparative analysis of the battery working conditions under low temperature and room temperature were conducted by using the EKF (extended Kalman filter) with SCKF-STF (square cubature Kalman filter) algorithm. Experimental results show that SCKF-STF algo- rithm can well eliminate effects of the model uncertainty. Estimation error of SOC under low temperature and room temperature are improved 0.53% and 3.8% than that of EKF algorithm.
出处 《电机与控制学报》 EI CSCD 北大核心 2013年第10期70-76,84,共8页 Electric Machines and Control
基金 国家973计划课题(2009CB210107)
关键词 电动汽车 锂动力电池 电荷状态 参数估计 平方根容积卡尔曼滤波 electric vehicle Lithium-ion power battery state of charge parameters estimation squarecubature Kalman filter
  • 相关文献

参考文献6

二级参考文献24

共引文献202

同被引文献89

  • 1张清勇,李昶吾,郭广淼,王建建.基于MCTLBO-RNN的短时交通流预测[J].武汉理工大学学报,2020,42(8):92-99. 被引量:3
  • 2张利彪,周春光,刘小华,马铭.粒子群算法在求解优化问题中的应用[J].吉林大学学报(信息科学版),2005,23(4):385-389. 被引量:39
  • 3李艳,胡杨,刘庆国.放电倍率对锂离子蓄电池循环性能的影响[J].电源技术,2006,30(6):488-491. 被引量:19
  • 4刘煌.一种基于遗传算法的改进PSO优化算法[J].软件导刊,2010,9(3):59-61. 被引量:2
  • 5XU Jie.State of Charge Estimation Online Based on EKF-Ah Method for Lithium-ion Power Battery[C]//2009 International Congress on Image and Signal Processing(CISP 09),2009,11:1. 被引量:1
  • 6LEE S J1KIM J H1LEE J M,et al.The State and Parameter Esti- mation of an Li-lon Battery Using a New OCV-SOC Concept[C]//.2007 IEEE Conference on Power Electronics Specialists, 2007,10:2799-2803. 被引量:1
  • 7MATTHIEU D,LIAW B Y.Identify Capacity Fading Mechanism in a Commercial LiFePO4 Cell[J].Journal of Power Source,2009,194:541-549. 被引量:1
  • 8WEI He,NICHOLAS WilIiard,CHEN Chaoohao,et al.State of Charge Estimation for Li-ion Batteries Using Neural Network Mod- eling and Unscented Kalman Filter-based Error Cancellation[J]. International Journal of Electrical Power and Energy Systems,2014:. 被引量:1
  • 9JOHNSON V H. Battery performance models in ADVISOR [ J ]. Journal of Power Sources, 2002, 110(2) : 321 -329. 被引量:1
  • 10PANG S, FARRELL J, DU J, et al. Battery state-of-charge esti- mation [ C ]//Proceedings of the American Control Conference, Arlington, VA. June 25 -27, 2001 : 1644 - 1649. 被引量:1

引证文献9

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部