As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could h...As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.展开更多
Ionic liquids(ILs)are known as green solvents,and have been widely used in the dissolution and transformation of biopolymers,the extraction of bioactive compounds and metal ions,and the capture of SO2 or CO2.However,l...Ionic liquids(ILs)are known as green solvents,and have been widely used in the dissolution and transformation of biopolymers,the extraction of bioactive compounds and metal ions,and the capture of SO2 or CO2.However,less attention was given to the separation of bio-based chemicals,such as diols and organic acids.Bio-based chemicals can be efficiently separated by organic solvent-based salting-out extraction(SOE)from fermentation broths,while organic solvents are normally unfriendly to environment and process safety in commercialized production due to their toxicity or/and flammability.In recent years,the IL-based SOE system has been explored in the separation of bio-based chemicals as an alternative of organic solvent-based SOE system.In this review,the progress of IL-based SOE of biobased chemicals has been summarized,including the effect of ILs structure on the formation of aqueous two phases,and the influences of ILs structure and concentration,temperature and pH on the partition behaviors of target products and ILs as well as removal of impurities.Most of bio-based chemicals could be distributed into the IL-rich phase with high recovery,while the partition behaviors of bio-based chemicals are sometimes different from that in organic solvent-based SOE systems.Although the results of ILbased SOE are promising,further studies are still required in the increased selectivity of target products over by-products,recovery and recycling of ILs,and the separation between ILs and bio-based chemicals.Additionally,three kinds of integrated bioprocesses would be developed on basis of utilization of ILs as extractant for SOE,catalyst for condensation reaction and solvent for pretreatment of lignocellulose.展开更多
In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.Th...In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.The complete nonlinear governing equations are discretized via Galerkin’s method and then numerically solved by the use of a fourth-order Runge-Kutta integration algorithm.Different initial conditions are chosen for calculations to show the nonplanar buckling characteristics of the pipe in two perpendicular lateral directions.A detailed parametric analysis is performed in order to study the influence of several key system parameters such as the mass ratio,the flow velocity,and the gravity parameter on the post-buckling behavior of the pipe.Typical results are presented in the form of bifurcation diagrams when the flow velocity is selected as the variable parameter.It is found that the pipe will stay at its original straight equilibrium position until the critical flow velocity is reached.Just beyond the critical flow velocity,the pipe would lose stability by static divergence via a pitchfork bifurcation,and two possible nonzero equilibrium positions are generated.It is shown that the buckling and post-buckling behaviors of the pipe cannot be influenced by the mass ratio parameter.Unlike a pipe with two immovable ends,however,the pinned-pinned pipe with an axially sliding downstream end shows some different features regarding post-buckling behaviors.The most important feature is that the buckling amplitude of the pipe with an axially sliding downstream end would increase first and then decrease with the increase in the flow velocity.In addition,the buckled shapes of the pipe varying with the flow velocity are displayed in order to further show the new post-buckling features of the pipe with an axially sliding downstream end.展开更多
文摘As Egyptian oil and gas downstream information technology has grown digitally over the past decade, security breaches against these digitally connected systems have also increased. These cyber security threats could have devastating effects on the operations and reputation of these companies. Preventing such cyberattacks is crucial. Especially, with the significance of the Egyptian oil and gas downstream sector to the local economy and the fact that many of these connected systems are sometimes managed remotely. This paper examines the value of the ISO 27001 standard in mitigating the effect of cyber threat and seeks to inspire decision-makers to the importance of the proactive measures to strengthen their organization’s cybersecurity posture and protect information critical assets. The study stresses the importance of improving the local educational system to bridge the gap between supply and demand for cybersecurity specialists by implementing a structured approach that emphasizes behavior modification to get a high return on investment in cybersecurity awareness.
基金This work was supported by the National Natural Science Foundation of China(Grant No.21978038).
文摘Ionic liquids(ILs)are known as green solvents,and have been widely used in the dissolution and transformation of biopolymers,the extraction of bioactive compounds and metal ions,and the capture of SO2 or CO2.However,less attention was given to the separation of bio-based chemicals,such as diols and organic acids.Bio-based chemicals can be efficiently separated by organic solvent-based salting-out extraction(SOE)from fermentation broths,while organic solvents are normally unfriendly to environment and process safety in commercialized production due to their toxicity or/and flammability.In recent years,the IL-based SOE system has been explored in the separation of bio-based chemicals as an alternative of organic solvent-based SOE system.In this review,the progress of IL-based SOE of biobased chemicals has been summarized,including the effect of ILs structure on the formation of aqueous two phases,and the influences of ILs structure and concentration,temperature and pH on the partition behaviors of target products and ILs as well as removal of impurities.Most of bio-based chemicals could be distributed into the IL-rich phase with high recovery,while the partition behaviors of bio-based chemicals are sometimes different from that in organic solvent-based SOE systems.Although the results of ILbased SOE are promising,further studies are still required in the increased selectivity of target products over by-products,recovery and recycling of ILs,and the separation between ILs and bio-based chemicals.Additionally,three kinds of integrated bioprocesses would be developed on basis of utilization of ILs as extractant for SOE,catalyst for condensation reaction and solvent for pretreatment of lignocellulose.
基金Project supported by the National Natural Science Foundation of China(Nos.11622216,11602090,and 11672115)the Natural Science Foundation of Hubei Province(No.2017CFB429)the fundamental Research Funds for the Central Universities of China(No.2017KFYXJJ135)
文摘In this study,the nonplanar post-buckling behavior of a simply supported fluid-conveying pipe with an axially sliding downstream end is investigated within the framework of a three-dimensional(3 D)theoretical model.The complete nonlinear governing equations are discretized via Galerkin’s method and then numerically solved by the use of a fourth-order Runge-Kutta integration algorithm.Different initial conditions are chosen for calculations to show the nonplanar buckling characteristics of the pipe in two perpendicular lateral directions.A detailed parametric analysis is performed in order to study the influence of several key system parameters such as the mass ratio,the flow velocity,and the gravity parameter on the post-buckling behavior of the pipe.Typical results are presented in the form of bifurcation diagrams when the flow velocity is selected as the variable parameter.It is found that the pipe will stay at its original straight equilibrium position until the critical flow velocity is reached.Just beyond the critical flow velocity,the pipe would lose stability by static divergence via a pitchfork bifurcation,and two possible nonzero equilibrium positions are generated.It is shown that the buckling and post-buckling behaviors of the pipe cannot be influenced by the mass ratio parameter.Unlike a pipe with two immovable ends,however,the pinned-pinned pipe with an axially sliding downstream end shows some different features regarding post-buckling behaviors.The most important feature is that the buckling amplitude of the pipe with an axially sliding downstream end would increase first and then decrease with the increase in the flow velocity.In addition,the buckled shapes of the pipe varying with the flow velocity are displayed in order to further show the new post-buckling features of the pipe with an axially sliding downstream end.