Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service.Existing studies heavily rely on sentiment classification methods that require fully annotated ...Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service.Existing studies heavily rely on sentiment classification methods that require fully annotated inputs.However,there is limited labelled text available,making the acquirement process of the fully annotated input costly and labour-intensive.Lately,semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods.Nevertheless,some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training.Literature also shows that not all unlabelled instances are equally useful;thus identifying the informative unlabelled instances is beneficial in training a semi-supervised model.To achieve this,an informative score is proposed and incorporated into semisupervised sentiment classification.The evaluation is performed on a semisupervised method without an informative score and with an informative score.By using the informative score in the instance selection strategy to identify informative unlabelled instances,semi-supervised models perform better compared to models that do not incorporate informative scores into their training.Although the performance of semi-supervised models incorporated with an informative score is not able to surpass the supervised models,the results are still found promising as the differences in performance are subtle with a small difference of 2%to 5%,but the number of labelled instances used is greatly reduced from100%to 40%.The best finding of the proposed instance selection strategy is achieved when incorporating an informative score with a baseline confidence score at a 0.5:0.5 ratio using only 40%labelled data.展开更多
目前常用向量空间模型VSM(vector space model)表示文档,造成的高维问题制约了其实际应用的效果。采用了一种高性能特征选择函数,在构建VSM时选取对区分类别贡献较大的特征词,因此有效地降低了特征空间的纬度,大大提高了系统的效率,改...目前常用向量空间模型VSM(vector space model)表示文档,造成的高维问题制约了其实际应用的效果。采用了一种高性能特征选择函数,在构建VSM时选取对区分类别贡献较大的特征词,因此有效地降低了特征空间的纬度,大大提高了系统的效率,改善了聚类的效果。通过真实数据集上的实验,证明其性能优于传统方法。展开更多
基金This research is supported by Fundamental Research Grant Scheme(FRGS),Ministry of Education Malaysia(MOE)under the project code,FRGS/1/2018/ICT02/USM/02/9 titled,Automated Big Data Annotation for Training Semi-Supervised Deep Learning Model in Sentiment Classification.
文摘Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service.Existing studies heavily rely on sentiment classification methods that require fully annotated inputs.However,there is limited labelled text available,making the acquirement process of the fully annotated input costly and labour-intensive.Lately,semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods.Nevertheless,some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training.Literature also shows that not all unlabelled instances are equally useful;thus identifying the informative unlabelled instances is beneficial in training a semi-supervised model.To achieve this,an informative score is proposed and incorporated into semisupervised sentiment classification.The evaluation is performed on a semisupervised method without an informative score and with an informative score.By using the informative score in the instance selection strategy to identify informative unlabelled instances,semi-supervised models perform better compared to models that do not incorporate informative scores into their training.Although the performance of semi-supervised models incorporated with an informative score is not able to surpass the supervised models,the results are still found promising as the differences in performance are subtle with a small difference of 2%to 5%,but the number of labelled instances used is greatly reduced from100%to 40%.The best finding of the proposed instance selection strategy is achieved when incorporating an informative score with a baseline confidence score at a 0.5:0.5 ratio using only 40%labelled data.
文摘目前常用向量空间模型VSM(vector space model)表示文档,造成的高维问题制约了其实际应用的效果。采用了一种高性能特征选择函数,在构建VSM时选取对区分类别贡献较大的特征词,因此有效地降低了特征空间的纬度,大大提高了系统的效率,改善了聚类的效果。通过真实数据集上的实验,证明其性能优于传统方法。