The calcite dissolution rates at 50-250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concen...The calcite dissolution rates at 50-250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concentration (Ceq) of calcite dissolution in deionized water at 20 MPa was determined using dissolution data according to the iterative method presented by Jeschke and Dreybrodt. The equilibrium concentrations at 50, 100, 150, 200 and 250 ℃ are 1.84×10^-4, 2.23×10^-4, 2.25×10^-4, 2.31×10^-4 and 2.24×10^-4 mol/L, respectively. The Ceq increases first and then decreases with temperature varying from 50 to 250 ℃ at 20 MPa, and the same variation trend occurs at 10 MPa with lower values. The maximum value (or extremum) of Ceq would increase with temperature at constant pressures. The dissolution reaction of calcite in this experiment is approaching the calcite equilibrium, and the reaction order doesn't keep a constant at different temperatures, which could imply that a change of the reac- tion mechanism was occurring. The Arrhenius equation shouldn't be used to calculate apparent activation energy using rate constant data at different temperatures when the reaction order or reaction mechanism changed.展开更多
A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are anal...A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model. A con- tinuous concentration change of H+ was solved by iterative coupling using Matlab, and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the driving force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, a commercial computational fluid dynamics (CFD) tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.展开更多
Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REE...Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.展开更多
Forming a new concentrated sense of useful components in conditions of nature, geological processes allows us to create techogenous deposits of required quality and forms in situ. The article presents a variant of the...Forming a new concentrated sense of useful components in conditions of nature, geological processes allows us to create techogenous deposits of required quality and forms in situ. The article presents a variant of the preparation of the deposit by a filtration geological process in situ. Structural and material transformation of the massif of hypergenesis nature methods allows bringing qualitative indicators to the required condition values. This will ensure the effective development of the deposit with traditional technological solutions. Experimental results of aqueous filtration are described. The schemes of technological solutions for natural and technogenic deposits are considered.展开更多
Cellulose pulps were directly dissolved in a green solvent of sodium hydrate/urea/thiourea/water with different composition for the purpose to prepare new regenerated cellulose fibers or films. The results showed that...Cellulose pulps were directly dissolved in a green solvent of sodium hydrate/urea/thiourea/water with different composition for the purpose to prepare new regenerated cellulose fibers or films. The results showed that the highest solubility of cellulose in the solvent with the composition of 8/8/6.5/77.5. The results revealed that the pulp feeding sequence, stirring rate, pre-treatment of pulp and pulp size affected the cellulose concentration in the green solvent. Accordingly, the more effective dissolution method was proposed in order to get higher concentration of cellulose. Furthermore, the properties of solution prepared by different kinds of pulps in the solvent were investigated by ARES rheometer. Rheologieal analyses indicated that all cellulose aqueous solutions in their high concentration were pseudoplastic fluids and sensitive to temperature and tended to transform to gel when temperature increased.展开更多
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB421006)the State Key Laboratory of Geological Processes and Mineral Resources (No. GPMR200843)
文摘The calcite dissolution rates at 50-250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concentration (Ceq) of calcite dissolution in deionized water at 20 MPa was determined using dissolution data according to the iterative method presented by Jeschke and Dreybrodt. The equilibrium concentrations at 50, 100, 150, 200 and 250 ℃ are 1.84×10^-4, 2.23×10^-4, 2.25×10^-4, 2.31×10^-4 and 2.24×10^-4 mol/L, respectively. The Ceq increases first and then decreases with temperature varying from 50 to 250 ℃ at 20 MPa, and the same variation trend occurs at 10 MPa with lower values. The maximum value (or extremum) of Ceq would increase with temperature at constant pressures. The dissolution reaction of calcite in this experiment is approaching the calcite equilibrium, and the reaction order doesn't keep a constant at different temperatures, which could imply that a change of the reac- tion mechanism was occurring. The Arrhenius equation shouldn't be used to calculate apparent activation energy using rate constant data at different temperatures when the reaction order or reaction mechanism changed.
基金Project supported by the National Key Technologies Supporting Program of China during the 11th Five-Year Plan Period (No.2006BAA01B04)the New Century Excellent Talent in University(No. NCET-06-0513), China
文摘A model describing the absorption process of SO2 into limestone slurry with a spray scrubber is presented. Both the physical performance of the spray liquid in the scrubber and the involved chemical reactions are analyzed in the model. A con- tinuous concentration change of H+ was solved by iterative coupling using Matlab, and it was found that there was a remarkable influence on the concentration of the other elements in the process of SO2 absorption. The calculations show that the enhancement factor exponentially grows with an increasing value of pH and logarithmically decays with an increasing value of the driving force. To verify the accuracy of the model, experiments were also carried out, and the results suggest that the model, after combining the physical performance of the spray and the enhancement factor, can more precisely describe SO2 absorption in a spray scrubber. Furthermore, a commercial computational fluid dynamics (CFD) tool is used to perform several simulations which describe and clarify the effects of variables on SO2 absorption. The results of numerical simulation can provide a basis for further design and optimization of the scrubber.
文摘Phosphogypsum(PG), the main by-product of phosphoric acid production industries, is considered one of the most important secondary sources of rare earth elements(REEs). The current study focuses on the recovery of REEs content and the residual phosphate content existing in the PG with preserving on the CaSO_(4)skeleton to be used in other various applications. These attainments are carried out using citric acid leaching process via soaking technique. Several dissolution parameters for REEs using citric acid were studied, including soaking time, soaking temperature, citric acid concentration, solid-to-liquid ratio, and recycling of the citrate leaching solutions in the further REEs dissolution experiments. The best-operating conditions were 14 d of soaking time, 7.5% citric acid concentration, and the solid-toliquid ratio of 1/5 at ambient temperature. About 79.57% dissolution efficiency of REEs was achieved using the optimal conditions. Applying four soaking stages by mixing different fresh PG samples with the same citrate solution sequentially, cumulative dissolution efficiency for REEs was found to be 64.7% under optimal soaking conditions. REEs were recovered using Dowex 50X8 resin from citrate solutions with 96% extraction efficiency. Dissolution kinetics proved the pseudo-first-order nature, reversible reactions, and two activation energies for all REEs.
文摘Forming a new concentrated sense of useful components in conditions of nature, geological processes allows us to create techogenous deposits of required quality and forms in situ. The article presents a variant of the preparation of the deposit by a filtration geological process in situ. Structural and material transformation of the massif of hypergenesis nature methods allows bringing qualitative indicators to the required condition values. This will ensure the effective development of the deposit with traditional technological solutions. Experimental results of aqueous filtration are described. The schemes of technological solutions for natural and technogenic deposits are considered.
文摘Cellulose pulps were directly dissolved in a green solvent of sodium hydrate/urea/thiourea/water with different composition for the purpose to prepare new regenerated cellulose fibers or films. The results showed that the highest solubility of cellulose in the solvent with the composition of 8/8/6.5/77.5. The results revealed that the pulp feeding sequence, stirring rate, pre-treatment of pulp and pulp size affected the cellulose concentration in the green solvent. Accordingly, the more effective dissolution method was proposed in order to get higher concentration of cellulose. Furthermore, the properties of solution prepared by different kinds of pulps in the solvent were investigated by ARES rheometer. Rheologieal analyses indicated that all cellulose aqueous solutions in their high concentration were pseudoplastic fluids and sensitive to temperature and tended to transform to gel when temperature increased.