期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
磁场淬火强韧化原理 被引量:6
1
作者 孙忠继 《热处理》 CAS 2002年第1期37-40,共4页
高温顺磁性奥氏体在外强磁场的作用下可发生磁化变形 ,使奥氏体形成高密度的位错胞结构 ,并有弥散碳化物析出。这种位错胞结构在淬火后被马氏体继承并限制了马氏体长大 ,细化了组织 。
关键词 磁场淬火 强韧性原理 高温奥氏体 磁化形变 位错胞结构
下载PDF
Er和Yb元素对二元Al-Mg合金位错分布组态的影响 被引量:5
2
作者 宋旼 贺跃辉 《中国有色金属学报》 EI CAS CSCD 北大核心 2011年第1期66-71,共6页
采用透射电镜研究Er和Yb元素对二元Al-Mg合金位错分布组态的影响。研究结果表明:二元Al-Mg合金挤压态的位错组态呈典型的"Taylor晶格"分布,但经拉伸变形至断裂后,合金中储存的高应变能可以抵消Mg原子对位错运动的阻碍作用,使... 采用透射电镜研究Er和Yb元素对二元Al-Mg合金位错分布组态的影响。研究结果表明:二元Al-Mg合金挤压态的位错组态呈典型的"Taylor晶格"分布,但经拉伸变形至断裂后,合金中储存的高应变能可以抵消Mg原子对位错运动的阻碍作用,使部分位错发生束集而产生交滑移,最终形成胞状组织。添加Er元素不改变Al-Mg合金的位错组态,无论是经挤压还是经拉伸变形至断裂后,含Er的Al-Mg合金均具有与二元Al-Mg合金类似的位错分布组态。添加Yb元素可明显地改变Al-Mg合金的位错分布组态。即使在变形量较小的挤压态,位错也不呈准均匀的"Taylor晶格"分布,而是表现出胞状组织的特征。当添加0.3%(质量分数)的Yb时,Al-Mg合金中形成了高密度位错墙;而当添加1.0%的Yb时,合金中形成了明显的胞状组织。Yb原子通过与Mg和Al原子形成脆性化合物,降低了Mg在基体中的固溶度,从而抑制Mg原子对位错运动的阻碍作用。 展开更多
关键词 AL-MG合金 位错组态 Taylor晶格 胞状组织
下载PDF
DISLOCATION ARRAY AT VARIOUS DEFORMING AND HARDENING STAGES OF STEEL 1035 被引量:1
3
作者 LUO Jingxi TAN Yuxu (State Key Laboratory for Mechanical Behaviour of Materials,Xi’an Jiaotong. University, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第3期195-198,共4页
The alteration of dislocation arrays in the process of strain hardening for normalized carbon steel 1035 was investigated by transmission electron microscopy. At primary stage the separated dislocation lines tend to ... The alteration of dislocation arrays in the process of strain hardening for normalized carbon steel 1035 was investigated by transmission electron microscopy. At primary stage the separated dislocation lines tend to form tangles and networks, dislocation cells appear at the secondary stage, the amount of the cells increases significantly, its average dimension does not change and the cell walls become clear. The third stage of strain hardening was observed in the process from necking to fracture and shows a straight line segment on the lg σ -lg ε curve, at this time the dislocation cells become smaller and tend to form band structure. 展开更多
关键词 strain hardening dislocation array cell structure steel 1035
下载PDF
Effect of martensitic transformation on nano/ultrafine-grained structure in 304 austenitic stainless steel 被引量:1
4
作者 Na Gong Hui-bin Wu +3 位作者 Gang Niu Jia-ming Cao Da Zhang Tana 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第12期1231-1237,共7页
304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electro... 304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electron backscatter diffraction and X-ray diffraction were used to characterize the resulting microstructures.The results showed that with the increase of cold reduction,the content of martensite was increased.The steel performed work hardening during cold-working owing to the occurrence of strain induced martensite which nucleated in single shear bands.Further rolling broke up the lath-type martensite into dislocation-cell type martensite because of the formation of slip bands.Samples annealed at 800-960°C for 60 swere of NG/UFG structure with different percentage of nanocrystalline(60-100 nm)and ultrafine(100-500 nm)grains,submicron size(500-1000 nm)grains and micron size(〉1000 nm)grains.The value of the Gibbs free energy exhibited that the reversion mechanism of the reversion process was shear controlled by the annealing temperature.For a certain annealing time during the reversion process,austenite nucleated first on dislocation-cell type martensite and the grains grew up subsequently and eventually to be micrometer/submicrometer grains,while the nucleation of austenite on lath-type martensite occurred later resulting in nanocrystalline/ultrafine grains.The existence of the NG/UFG structure led to a higher strength and toughness during tensile test. 展开更多
关键词 304 austenitic stainless steel Nano/ultrafine-grained structure Reversion mechanism Lath-type martensite dislocation-cell type martensite Martensitic transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部