期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
基于半监督流形学习的WLAN室内定位算法 被引量:6
1
作者 夏颖 马琳 +1 位作者 张中兆 周才发 《系统工程与电子技术》 EI CSCD 北大核心 2014年第7期1422-1427,共6页
针对无线局域网室内定位系统中,因参考点密集布设而带来的数据采集、更新及定位匹配运算量增加的问题,提出了一种新的基于半监督流形学习的降维判别嵌入定位算法。该算法利用少量已标记数据和部分未标记数据,通过求解目标函数最优化,对... 针对无线局域网室内定位系统中,因参考点密集布设而带来的数据采集、更新及定位匹配运算量增加的问题,提出了一种新的基于半监督流形学习的降维判别嵌入定位算法。该算法利用少量已标记数据和部分未标记数据,通过求解目标函数最优化,对高维接收信号进行维数约减,保留最具判别力的定位特征,然后采用确定性定位算法找到定位特征与位置坐标的映射关系。实验结果表明,算法定位精度高于传统的定位算法,降低了离线阶段的数据采集工作量,便于后期数据库的实时更新。 展开更多
关键词 无线局域网 半监督流形学习 降维 判别嵌入 定位算法
下载PDF
Home Automation-Based Health Assessment Along Gesture Recognition via Inertial Sensors
2
作者 Hammad Rustam Muhammad Muneeb +4 位作者 Suliman A.Alsuhibany Yazeed Yasin Ghadi Tamara Al Shloul Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第4期2331-2346,共16页
Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsens... Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors. 展开更多
关键词 Genetic algorithm human locomotion activity recognition human–computer interaction human gestures recognition principal hand gestures recognition inertial sensors principal component analysis linear discriminant analysis stochastic neighbor embedding
下载PDF
改进的保持邻域嵌入人脸识别方法 被引量:2
3
作者 王道俊 王振海 《计算机工程》 CAS CSCD 北大核心 2010年第21期207-208,211,共3页
为进一步提高保持邻域嵌入算法在人脸识别中的识别性能,提出一种改进的保持邻域嵌入人脸识别方法LDNPE。利用先验的类标签信息构造权重矩阵,按照线性鉴别的思想把类间散布矩阵嵌入到目标函数中,增加样本类间散布约束,基于修改后的目标... 为进一步提高保持邻域嵌入算法在人脸识别中的识别性能,提出一种改进的保持邻域嵌入人脸识别方法LDNPE。利用先验的类标签信息构造权重矩阵,按照线性鉴别的思想把类间散布矩阵嵌入到目标函数中,增加样本类间散布约束,基于修改后的目标函数得到最优变换矩阵,并用最近距离分类器分类。在CAS-PEAL和FERET人脸数据库上的实验结果表明该算法的有效性。 展开更多
关键词 人脸识别 线性鉴别 邻域保持 邻域嵌入
下载PDF
基于加权邻域极大边界判别式嵌入的人脸识别算法 被引量:1
4
作者 江艳霞 吴腾飞 刘子渊 《计算机工程》 CAS CSCD 北大核心 2016年第6期167-170,共4页
在研究局部极大边界判别式嵌入的基础上,提出加权邻域极大边界判别式嵌入算法。该算法是一种基于流形的特征提取算法,在构建目标函数时采用数据的最优重构系数,能够较好地保留数据的邻域几何结构,且不用计算高维矩阵的逆,克服了特征提... 在研究局部极大边界判别式嵌入的基础上,提出加权邻域极大边界判别式嵌入算法。该算法是一种基于流形的特征提取算法,在构建目标函数时采用数据的最优重构系数,能够较好地保留数据的邻域几何结构,且不用计算高维矩阵的逆,克服了特征提取中的小样本问题。在2个通用人脸库上的识别实验结果证明,该算法充分利用了每一个流形的判别信息,在缩小同一类别邻域节点距离的同时增加不同类别邻域节点之间的距离,有效区分了不同的类别,能够获得较好的识别结果。 展开更多
关键词 人脸识别 特征提取 极大边界 加权邻域 判别式嵌入
下载PDF
Local uncorrelated local discriminant embedding for face recognition
5
作者 Xiao-hu MA Meng YANG Zhao ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第3期212-223,共12页
The feature extraction algorithm plays an important role in face recognition. However, the extracted features also have overlapping discriminant information. A property of the statistical uncorrelated criterion is tha... The feature extraction algorithm plays an important role in face recognition. However, the extracted features also have overlapping discriminant information. A property of the statistical uncorrelated criterion is that it eliminates the redundancy among the extracted discriminant features, while many algorithms generally ignore this property. In this paper, we introduce a novel feature extraction method called local uncorrelated local discriminant embedding(LULDE). The proposed approach can be seen as an extension of a local discriminant embedding(LDE)framework in three ways. First, a new local statistical uncorrelated criterion is proposed, which effectively captures the local information of interclass and intraclass. Second, we reconstruct the affinity matrices of an intrinsic graph and a penalty graph, which are mentioned in LDE to enhance the discriminant property. Finally, it overcomes the small-sample-size problem without using principal component analysis to preprocess the original data, which avoids losing some discriminant information. Experimental results on Yale, ORL, Extended Yale B, and FERET databases demonstrate that LULDE outperforms LDE and other representative uncorrelated feature extraction methods. 展开更多
关键词 Feature extraction Local discriminant embedding Local uncorrelated criterion Face recognition
原文传递
基于鉴别稀疏保持嵌入的人脸识别算法 被引量:56
6
作者 马小虎 谭延琪 《自动化学报》 EI CSCD 北大核心 2014年第1期73-82,共10页
鉴于近年来稀疏表示(Sparse representation,SR)在高维数据例如人脸图像的特征提取与降维领域的快速发展,对原始的稀疏保持投影(Sparsity preserving projection,SPP)算法进行了改进,提出了一种叫做鉴别稀疏保持嵌入(Discriminant spars... 鉴于近年来稀疏表示(Sparse representation,SR)在高维数据例如人脸图像的特征提取与降维领域的快速发展,对原始的稀疏保持投影(Sparsity preserving projection,SPP)算法进行了改进,提出了一种叫做鉴别稀疏保持嵌入(Discriminant sparsity preserving embedding,DSPE)的算法.通过求解一个最小二乘问题来更新SPP中的稀疏权重并得到一个更能真实反映鉴别信息的鉴别稀疏权重,最后以最优保持这个稀疏权重关系为目标来计算高维数据的低维特征子空间.该算法是一个线性的监督学习算法,通过引入鉴别信息,能够有效地对高维数据进行降维.在ORL库、Yale库、扩展Yale B库和CMU PIE库上的大量实验结果验证了算法的有效性. 展开更多
关键词 人脸识别 稀疏表示 稀疏保持投影 鉴别稀疏保持嵌入
下载PDF
基于保持近邻判别嵌入的人脸识别 被引量:11
7
作者 王国强 欧宗瑛 +1 位作者 刘典婷 苏铁明 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第3期378-382,共5页
保持近邻嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构的属性.虽然NPE已在一些领域得到应用,但解决识别任务还有局限性.为改进NPE的识别性能,提出了一种保持近邻判别嵌入(NPDE)人脸识别方法.在NPDE算法中,有效结合了... 保持近邻嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构的属性.虽然NPE已在一些领域得到应用,但解决识别任务还有局限性.为改进NPE的识别性能,提出了一种保持近邻判别嵌入(NPDE)人脸识别方法.在NPDE算法中,有效结合了LDA和NPE的思想,具有很强的判别力,还能根据先验类标签信息保持局部邻域的固有几何关系.在ORL人脸库以及Yale人脸数据库上的实验结果表明提出的方法是有效的. 展开更多
关键词 人脸识别 子空间学习 保持近邻嵌入 保持近邻判别嵌入
下载PDF
一种邻域保持判别嵌入人脸识别方法 被引量:14
8
作者 杜海顺 柴秀丽 +1 位作者 汪凤泉 张帆 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第3期625-629,共5页
邻域保持嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构信息的能力。为了进一步提高NPE的性能,本文提出了一种邻域保持判别嵌入(NPDE)算法,并将其用于人脸识别。在NPDE算法中引入了数据集的判别信息,在保持局部邻域结... 邻域保持嵌入(NPE)是一种子空间学习方法,具有保持数据流形上局部邻域结构信息的能力。为了进一步提高NPE的性能,本文提出了一种邻域保持判别嵌入(NPDE)算法,并将其用于人脸识别。在NPDE算法中引入了数据集的判别信息,在保持局部邻域结构信息的同时,具有更强的判别力。在Yale和ORL人脸数据库上的实验结果表明,本文提出的NPDE用于人脸识别具有较高的识别率。 展开更多
关键词 邻域保持嵌入 邻域保持判别嵌入 流形学习 人脸识别
下载PDF
基于半监督稀疏鉴别嵌入的高光谱遥感影像分类 被引量:14
9
作者 黄鸿 曲焕鹏 《光学精密工程》 EI CAS CSCD 北大核心 2014年第2期434-442,共9页
为了有效利用已标记与未标记样本提高高光谱遥感影像分类精度,提出一种新的半监督流形学习方法——半监督稀疏鉴别嵌入算法(SSDE)。该算法结合了近邻流形结构及稀疏性的优点,不仅保留样本间的稀疏重构关系,而且通过引入少量有标记的训... 为了有效利用已标记与未标记样本提高高光谱遥感影像分类精度,提出一种新的半监督流形学习方法——半监督稀疏鉴别嵌入算法(SSDE)。该算法结合了近邻流形结构及稀疏性的优点,不仅保留样本间的稀疏重构关系,而且通过引入少量有标记的训练样本以及大量无标记训练样本来获得高维数据的内在属性以及低维流形结构,实现鉴别特征提取,提高分类精度。在Washington DC Mall和Indian Pine数据集上的分类识别实验表明,该算法能够较为有效地发现高维空间中数据的内蕴结构,分类性能比其他算法有明显的提升。在随机选取8个有类别标记和60个无类别标记的数据作为训练样本的情况下,本文提出的SSDE算法在上述两个数据集上的分类精度分别达到了77.36%和97.85%。 展开更多
关键词 高光谱遥感影像 影像分类 维数约简 稀疏表示 流形学习 半监督稀疏鉴别嵌入
下载PDF
基于稀疏鉴别嵌入的高光谱遥感影像分类 被引量:8
10
作者 黄鸿 杨媚 张满菊 《光学精密工程》 EI CAS CSCD 北大核心 2013年第11期2922-2930,共9页
稀疏保持投影(SPP)是一种基于l1图的新型降维算法,它利用样本间的稀疏重构关系建图,但是SPP为非监督算法,分类效果受到限制。针对此问题,本文提出了一种新的稀疏流形学习算法-稀疏鉴别嵌入(SDE)。该算法在利用样本的稀疏重构关系建图时... 稀疏保持投影(SPP)是一种基于l1图的新型降维算法,它利用样本间的稀疏重构关系建图,但是SPP为非监督算法,分类效果受到限制。针对此问题,本文提出了一种新的稀疏流形学习算法-稀疏鉴别嵌入(SDE)。该算法在利用样本的稀疏重构关系建图时引入了样本的类别信息,并通过优化目标函数来得到投影矩阵,使得不同类的数据点在低维嵌入空间中尽可能地分散开。SDE通过结合数据稀疏性及类间流形结构的优点,不仅保留样本间的稀疏重构关系,而且通过引入训练样本的类别信息实现稀疏鉴别特征提取,更有利于分类。在Urban和Washington DC Mall数据集上的实验结果表明:SDE算法比其他算法的分类性能有明显的提升,在每类随机选取16个训练样本的情况下,SDE算法的分类精度分别达到了73.47%和98.35%。 展开更多
关键词 高光谱遥感影像 维数约简 稀疏表示 流形学习 稀疏鉴别嵌入
下载PDF
基于判别邻域嵌入的人脸识别 被引量:6
11
作者 王国强 欧宗瑛 +1 位作者 王海燕 苏铁明 《光电子.激光》 EI CAS CSCD 北大核心 2008年第5期700-703,共4页
提出了一种人脸识别子空间方法:判别邻域嵌入(DNE)。在框架中,训练样本数据的邻域和类关系被用来构建低维嵌入流形。在嵌入低维子空间后,同类样本保持它们固有的邻域关系,相反不同类近邻样本彼此远离。在ORL和Yale人脸数据库上,对提出... 提出了一种人脸识别子空间方法:判别邻域嵌入(DNE)。在框架中,训练样本数据的邻域和类关系被用来构建低维嵌入流形。在嵌入低维子空间后,同类样本保持它们固有的邻域关系,相反不同类近邻样本彼此远离。在ORL和Yale人脸数据库上,对提出的方法和主成分分析(PCA)、线性判别分析(LDA)、保持邻域嵌入(NPE)和保持局部投影(LPP)方法进行了比较,结果表明,提出的方法是有效的。 展开更多
关键词 子空间分析 判别邻域嵌入(DNE) 流形学习 降维 人脸识别
原文传递
一种新颖的通信辐射源个体细微特征提取方法 被引量:6
12
作者 雷迎科 郝晓军 +1 位作者 韩慧 王李军 《电波科学学报》 EI CSCD 北大核心 2016年第1期98-105,共8页
针对传统的方法难以有效提取通信辐射源个体鲁棒的细微特征,将流形学习理论引入到通信辐射源细微特征提取,提出了一种基于正交局部样条判别流形嵌入的通信辐射源个体细微特征提取方法.在实际采集的通信电台数据集上的实验结果验证了该... 针对传统的方法难以有效提取通信辐射源个体鲁棒的细微特征,将流形学习理论引入到通信辐射源细微特征提取,提出了一种基于正交局部样条判别流形嵌入的通信辐射源个体细微特征提取方法.在实际采集的通信电台数据集上的实验结果验证了该方法的有效性与可行性. 展开更多
关键词 通信辐射源 细微特征 双谱 正交局部样条判别嵌入 流形学习
下载PDF
基于核正交局部判别嵌入的人脸识别 被引量:6
13
作者 王庆军 张汝波 潘海为 《光电子.激光》 EI CAS CSCD 北大核心 2010年第9期1386-1389,共4页
针对人脸识别中的非线性特征提取问题,提出一种基于核正交局部判别嵌入(KOLDE,kernel orthogonal local discriminant embedding)的人脸识别算法。首先通过引入基向量正交约束,得到OLDE算法,并给出算法的推导过程。然后为了更好地处理... 针对人脸识别中的非线性特征提取问题,提出一种基于核正交局部判别嵌入(KOLDE,kernel orthogonal local discriminant embedding)的人脸识别算法。首先通过引入基向量正交约束,得到OLDE算法,并给出算法的推导过程。然后为了更好地处理高度复杂非线性结构数据,将OLDE向高维空间扩展,在核空间提取图像的高阶非线性信息,得到核空间OLDE算法。在ORL和PIE库上的人脸识别实验验证了算法的有效性。 展开更多
关键词 子空间 核正交局部判别嵌入(KOLDE) 核空间 流形 人脸识别
原文传递
面向高光谱图像分类的半监督Laplace鉴别嵌入 被引量:5
14
作者 李志敏 张杰 +1 位作者 黄鸿 马泽忠 《电子与信息学报》 EI CSCD 北大核心 2015年第4期995-1001,共7页
为有效提取出高光谱遥感图像数据的鉴别特征,该文阐述一种融合标记样本中鉴别信息和无标记样本中局部结构信息的半监督Laplace鉴别嵌入(SSLDE)算法。该算法利用标记样本的类别信息来保持样本集的可分性,并通过构建标记样本和无标记样... 为有效提取出高光谱遥感图像数据的鉴别特征,该文阐述一种融合标记样本中鉴别信息和无标记样本中局部结构信息的半监督Laplace鉴别嵌入(SSLDE)算法。该算法利用标记样本的类别信息来保持样本集的可分性,并通过构建标记样本和无标记样本的Laplace矩阵来发现样本集中局部流形结构,实现半监督的流形鉴别。在KSC和Urban数据集上的实验结果说明:该算法具有更高的分类精度,可以有效地提取出鉴别特征信息。在总体分类精度上,该算法比半监督最大边界准则(SSMMC)算法提升了6.3%~7.4%,比半监督流形保持嵌入(SSSMPE)算法提升了1.6%~4.4%。 展开更多
关键词 图像处理 高光谱遥感图像 鉴别特征 LAPLACE矩阵 半监督Laplace鉴别嵌入
下载PDF
一种基于低秩描述的图像集分类方法 被引量:5
15
作者 吕煊 王志成 +1 位作者 赵卫东 刘玉淑 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期271-276,共6页
保持局部图嵌入的流形鉴别分析方法将图像集所属子空间看作流形上的点,并使流形变换前后局部结构关系不变.然而在构造局部区域相似图矩阵时,用于描述节点局部区域范围的近邻节点个数会极大地影响算法的准确率,并会出现变换后流形的可分... 保持局部图嵌入的流形鉴别分析方法将图像集所属子空间看作流形上的点,并使流形变换前后局部结构关系不变.然而在构造局部区域相似图矩阵时,用于描述节点局部区域范围的近邻节点个数会极大地影响算法的准确率,并会出现变换后流形的可分辨性相比变换前提升很小甚至更低的情况.针对该问题,提出了一种低秩描述下的Grassmannian流形鉴别分析方法.通过对图像集的低秩描述,流形变换中局部嵌入时仅保持同类别节点的最近邻局部结构以及所有节点间的相异类别信息,从而避免了对近邻节点个数的选择,并增强了变换后流形的可分辨性.由15类复杂自然场景和Caltech101图像数据集的实验结果表明,该方法是可行的,并且极大地提高了图像集分类的准确率. 展开更多
关键词 流形鉴别分析 低秩分解 图像集 局部图嵌入
下载PDF
基于判别邻域嵌入算法的说话人识别 被引量:4
16
作者 梁春燕 袁文浩 +2 位作者 李艳玲 夏斌 孙文珠 《电子与信息学报》 EI CSCD 北大核心 2019年第7期1774-1778,共5页
该文提出一种基于判别邻域嵌入(DNE)算法的说话人识别。判别邻域嵌入算法作为流形学习方法的一种,可以通过构建邻接图获取数据的局部邻域结构信息;同时该算法可以充分利用类间判别信息,具有更强的判别能力。在美国国家标准技术研究院201... 该文提出一种基于判别邻域嵌入(DNE)算法的说话人识别。判别邻域嵌入算法作为流形学习方法的一种,可以通过构建邻接图获取数据的局部邻域结构信息;同时该算法可以充分利用类间判别信息,具有更强的判别能力。在美国国家标准技术研究院2010年说话人识别评测(NISTSRE2010)电话-电话核心测试集上的实验结果表明了该算法的有效性。 展开更多
关键词 说话人识别 总变化因子分析 邻域保持嵌入 判别邻域嵌入
下载PDF
一种半监督判别邻域嵌入算法 被引量:2
17
作者 刘志宇 《计算机工程与应用》 CSCD 北大核心 2011年第19期173-175,181,共4页
邻域保持嵌入(Neighborhood Preserving Embedding,NPE),作为局部线性嵌入(Locally Linear Embedding,LLE)的线性化版本,由于在映射前后保持了数据的局部几何结构并得到了原始数据的子空间描述,在模式识别领域具有较强的应用价值。但作... 邻域保持嵌入(Neighborhood Preserving Embedding,NPE),作为局部线性嵌入(Locally Linear Embedding,LLE)的线性化版本,由于在映射前后保持了数据的局部几何结构并得到了原始数据的子空间描述,在模式识别领域具有较强的应用价值。但作为非监督处理算法,在具体的模式分类中有一定局限性,提出一种NPE的改进算法——半监督判别邻域嵌入(SSDNE)算法,引入标记后样本点的类别信息,并在正则项中引入样本的流形结构,最大化标记样本点的类间信息和类内信息。既增加了算法的辨别能力又减少了监督算法中对样本点进行全标记的工作量。在ORL和YaleB人脸库上的实验结果表明,改进的算法较PCA、LDA、LPP以及原保持近邻判别嵌入算法的识别性能有了较明显的改善。 展开更多
关键词 邻域保持嵌入 线性辨别分析 流形 半监督判别邻域嵌入 人脸识别
下载PDF
局部差异正则化的边界判别投影 被引量:3
18
作者 何进荣 闭应洲 +1 位作者 丁立新 刘斌 《计算机学报》 EI CSCD 北大核心 2018年第4期780-795,共16页
高维是大数据的一个重要特点,数据降维是处理高维数据的有效手段.数据降维算法的设计,关键在于保持原始高维数据集中蕴含的判别信息和几何结构,使得生成的低维特征表示既能刻画原始高维数据的分布形状,又能以更低的计算成本服务于后续... 高维是大数据的一个重要特点,数据降维是处理高维数据的有效手段.数据降维算法的设计,关键在于保持原始高维数据集中蕴含的判别信息和几何结构,使得生成的低维特征表示既能刻画原始高维数据的分布形状,又能以更低的计算成本服务于后续的分类任务.边界判别投影算法是一种有监督的线性降维算法,通过最大化不同类别样本点之间的最小距离和最小化同类样本点之间的最大距离,来获取最优判别投影方向.为了保持样本点的几何结构,提高边界判别投影算法的泛化能力,在边界判别投影模型中融入了样本点的局部差异性信息.通过最大化投影之后样本点之间的局部差异来保持数据集的多样性,即在数据降维过程中,局部邻域内相距较远的样本点在投影之后应该保持较远的距离,从而防止在投影过程中原始数据集中蕴含的相似关系和拓扑结构发生扭曲.在图嵌入框架下,数据集的相似信息、判别信息和局部差异信息可以采用正则化的迹差准则进行数据建模.在优化求解时,为了降低散度矩阵特征分解的时间复杂度,通过对数据矩阵进行QR分解来加速计算.人脸图像数据集上的分类实验验证了局部差异正则化的边界判别投影算法在判别特征提取方面的有效性. 展开更多
关键词 数据降维 边界判别投影 数据分类 局部差异 图嵌入
下载PDF
基于SALDE-UKF-SVM算法的WLAN室内定位方法 被引量:3
19
作者 徐晓苏 吴晓飞 +1 位作者 张涛 闫琳宇 《中国惯性技术学报》 EI CSCD 北大核心 2017年第6期731-737,共7页
针对室内复杂环境,WLAN信号强度信息高维时变特性,提出一种引入监督能力的自适应局部线性判别嵌入算法(SALDE)和改进支持向量机(SVM)的室内无线定位算法。首先,该算法利用SALDE对所采集的WLAN信号进行特征提取,达到降低维度和增大类别... 针对室内复杂环境,WLAN信号强度信息高维时变特性,提出一种引入监督能力的自适应局部线性判别嵌入算法(SALDE)和改进支持向量机(SVM)的室内无线定位算法。首先,该算法利用SALDE对所采集的WLAN信号进行特征提取,达到降低维度和增大类别间判别信息的双重作用。然后,在低维流形空间中,利用SVM对数据进行特征分类判别,缩小定位区域,同时建立位置坐标与信息强度的非线性映射模型;最终利用无迹卡尔曼滤波算法(UKF)对估算位置进行滤波处理,提高定位精度与稳定性。仿真结果表明,该算法在定位误差2 m范围内精度达到72.4%,在4 m范围内精度已经高达95.8%,相比于传统SVM算法2 m内精度提高18.2%,在4 m内的精度提高17.7%,定位精度得到明显提升,可以较好地满足室内定位的需求。 展开更多
关键词 局部线性判别嵌入 特征降维 无迹卡尔曼滤波 支持向量机 室内定位
下载PDF
邻域嵌入的张量学习 被引量:2
20
作者 路梅 李凡长 《计算机科学与探索》 CSCD 北大核心 2017年第7期1102-1113,共12页
传统的机器学习算法把数据表示成向量的形式进行处理,而现实世界许多应用中的数据都是以张量形式存在的,如图像、视频数据等,如果将这些本质上非向量形式的数据强制转换成向量表示,不仅会产生维数灾难和和小样本问题,而且会破坏数据本... 传统的机器学习算法把数据表示成向量的形式进行处理,而现实世界许多应用中的数据都是以张量形式存在的,如图像、视频数据等,如果将这些本质上非向量形式的数据强制转换成向量表示,不仅会产生维数灾难和和小样本问题,而且会破坏数据本身的内部空间排列结构,不利于发现数据的好的低维表示。判别邻域嵌入(discriminant neighborhood embedding,DNE)是比较流行的面向向量的判别分析方法,在改进DNE算法的基础上,提出了面向张量数据的局部一致保持的邻域嵌入张量判别学习(neighborhood-embedded tensor learning,NTL)算法。NTL算法不仅克服了DNE面向向量的缺点,而且弥补了DNE方法偏重数据的邻域点而忽略数据的非邻域点影响的不足,通过精心设计目标函数(嵌入3个图:同类结点的邻接图、不同类结点的邻接图、其他结点的关联图),使投影空间的同类结点更加紧凑,不同类结点更加疏远,从而增强了算法的判别能力。3个公开数据库(ORL、PIE和COIL20)上的实验验证了NTL拥有更高的识别率,同时也拥有更高的算法效率。 展开更多
关键词 判别邻域嵌入(DNE) 张量子空间分析(TSA) 维数约简 判别分析 张量学习
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部