期刊文献+

一种基于低秩描述的图像集分类方法 被引量:5

Image Set Classification Based on Low-rank Representation
下载PDF
导出
摘要 保持局部图嵌入的流形鉴别分析方法将图像集所属子空间看作流形上的点,并使流形变换前后局部结构关系不变.然而在构造局部区域相似图矩阵时,用于描述节点局部区域范围的近邻节点个数会极大地影响算法的准确率,并会出现变换后流形的可分辨性相比变换前提升很小甚至更低的情况.针对该问题,提出了一种低秩描述下的Grassmannian流形鉴别分析方法.通过对图像集的低秩描述,流形变换中局部嵌入时仅保持同类别节点的最近邻局部结构以及所有节点间的相异类别信息,从而避免了对近邻节点个数的选择,并增强了变换后流形的可分辨性.由15类复杂自然场景和Caltech101图像数据集的实验结果表明,该方法是可行的,并且极大地提高了图像集分类的准确率. Graph embedding discriminant analysis on manifold approach represents each image set as a subspace on manifold. It maps the manifold to a more discriminative one with geometrical structure and local information preserved. However, its accuracy critically depends on the number of local neighbours when constructing similarity graph. This paper presents a novel approach with fixed neighbour numbers to implement graph embedding Grassmannian discriminant analysis based on low-rank representation (LRR) for each image set. After the low-rank components of each set being recovered, to preserve the nearest neighbour structure of nodes with the same label and all the different label information during the manifold mapping can always achieve the best performance. Experiments on two image datasets (15-scenes categories and Caltechl01) show that the proposed method greatly improves the classification accuracy of image sets.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期271-276,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(61103070) "十二五"国家科技支撑计划(2012BAF10B12) 上海市科委项目(12dz1125400) 中央高校基本科研业务费专项资金(0800219171)
关键词 流形鉴别分析 低秩分解 图像集 局部图嵌入 manifold discriminant analysis low-rank representation image set graph embedding
  • 相关文献

参考文献10

  • 1Arandjelovic O, Shakhnarovich G, Fisher J, et al. Face recognition with image sets using manifold density divergence [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego IEEE Computer Society, 2005, 581-588. 被引量:1
  • 2Kim T, Kittler J, Cipolla R. Discriminative learning and recognition of image set classes using canonical correlations [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2007, 29 (6): 1005. 被引量:1
  • 3Cevikalp H, Triggs B. Face recognition based on image sets EC]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco: IEEE Computer Society, 2010: 2567-2573. 被引量:1
  • 4Wang R P, Shan S G, Chen X L, et al. Manifold-manifold distance with application to face recognition based on image set [C] ff IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage: IEEE Computer Society, 2008: 2940-2947. 被引量:1
  • 5Harandi M T, Sanderson C, Shirazi S, et al. Graph Embedding Discriminant Analysis on Grassmannian Manifolds for Improved Image Set Matching [C] ff IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), iS. 1. ]: IEEE Computer Society, 2011: 2705-2712. 被引量:1
  • 6Peyr G. A Review of adaptive image representations [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (5) : 896. 被引量:1
  • 7Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories [ C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), New York: 2006: 2169-2176. 被引量:1
  • 8Liu G C, Lin Z C, Yu Y. Robust subspace segmentation by low- rank representation [C]//27th International Coference on Machine Le.arning ( ICML ), Haifa: National Science Foundation, 2010: 663-670. 被引量:1
  • 9Harem J, Lee D D. Grassmann discriminant analysis., a unifying view on subspace-based learning [ C ] // 25th International Coference on Machine Learning (ICML), Helsinki: Association for Computing Machinery, 2008: 376- 383. 被引量:1
  • 10Li F F, Fergus R, Perona P. Learning generative visual models from few training examples an incremental bayesian approach tested on 101 object categories EC]//IEEE CVPR Workshop on Generative-Model Based Vision, Washington D C: IEEE Computer Society, 2004 : 178-186. 被引量:1

同被引文献60

  • 1CONNOLLY J F, GRANGER E,SABOURIN R. Dynamic multi-ob- jective evolution of classifier ensembles for video face recognition [J]. Applied Soft Computing,2013,13(6) : 3149-3166. 被引量:1
  • 2CHEN Y C,PATEL V M,SHEKHAR S,et al. Video-based face recognition via joint sparse representation [ C]//Proe. 2013 lOth IEEE International Conference and Workshops on Automatic Face and Gesture Recognition(FG). [S. l. ] :IEEE Press,2013:1-8. 被引量:1
  • 3ZHAO M, YAGNIK J, ADAM H, et al, Large scale learning and rec- ognition of faces in web videos[ C]//Proc. 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008. [ S. l. ] : IEEE Press,2008 : 1-7. 被引量:1
  • 4ANAND C, LAWRANCE R. Algorithm for face recognition using HMM and SVD coefficients [ J ]. Artificial Intelligent Systems and Machine Learning,2013,5 (3) : 125-130. 被引量:1
  • 5WONG Y,CHEN S,MAU S,et al. Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition [ C ]//Proc. 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW ). [S. l. ] :IEEE Pross,2011:74-81. 被引量:1
  • 6WANG S J, CHEN H L, YAN W J, et al. Face recognition and micro,expression recognition based on discriminant tensor subspaee analysis plus extreme learning machine [ J ]. Neural Processing Let- ters,2014,39 ( 1 ) :25-43. 被引量:1
  • 7CINBIS R G,VERBEEK J,SCHMID C. Unsupervised metric learn- ing for face identLfication in TV video[ C]//Proc. 2011 IEEE Inter- national Conference on Computer Vision (ICCV). [ S. l. ] : IEEE Press,2011:1559-1566. 被引量:1
  • 8SALEEM N.视频监控中的人体分割,识别与跟踪[D].北京:北京邮电大学,2013. 被引量:1
  • 9ZHANG H,ZHANG Y,HUANG T S. Pose-robust face recognition sparse representation[ J]. Pattern Recognition,2013,46(5) :1511-1521. 被引量:1
  • 10NNAFIE A, SWART H E, CALVETE D, et al. Modeling the re- sponse of shorefaee-connected sand ridges to sand extraction on an inner shelf[ J ]. Ocean Dynamics,2014,64 (5) :723-740. 被引量:1

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部