With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern Ch...With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern China during the period from the Late Jurassic to Early Cretaceous and may give a new interpretation of the nature, timing and geodynamic settings of the “Yanshan Movement”. During the Mid-Late Jurassic (165±5 Ma), great readjustment of plate amalgamation kinematics took place in East Asia and the tectonic regime underwent great transformation, thus initiating a new tectonic regime in which the North China Block was the center and different plates converged toward it from the north, east and southwest and forming the “East Asia convergent” tectonic system characterized by intracontinental subduction and orogeny. As a consequence, the crustal lithosphere of the East Asian continent thickened considerably during the Late Jurassic, followed immediately by Early Cretaceous substantial lithospheric thinning and craton destruction featured by drastic lithospheric extension and widespread volcano-magmatic activities, resulting in a major biotic turnover from the Yanliao biota to Jehol Biota. Such a tremendous tectonic event that took place in the continent of China and East Asia is the basic connotation of the “Yanshan Movement”. In the paper, according to the deformation patterns, geodynamic settings and deep processes, the “Yanshan Movement” is redefined as the Late Jurassic East Asian multi-directional plate convergent tectonic regime and its associated extensive intracontinental orogeny and great tectonic change that started at -165±5 Ma. The substantial lithospheric attenuation in East China is considered the post-effect of the Yanshanian intracontinental orogeny and deformation.展开更多
Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties,such as high loading capacities and programmed drug release.In particular,hollow mult...Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties,such as high loading capacities and programmed drug release.In particular,hollow multishell structures(HoMSs)with multilevel shell and space can regulate the molecular-level interaction between drugs and materials,so as to achieve the temporal-spatial order and sequential release of drugs.The anisotropic hollow structures can control the drug diffusion process by inducing the macroscopic interface flow through autonomous movement,realizing the targeted drug transport and release.In this paper,a key focus will be HoMSs with their temporal-ordered architectures and anisotropic hollow carriers with directional movement.Their synthesis mechanisms,structure-property relationships,smartly programmed drug delivery and biomedical applications will be discussed,providing insights into designing next-generation intelligent drug carriers.展开更多
文摘With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern China during the period from the Late Jurassic to Early Cretaceous and may give a new interpretation of the nature, timing and geodynamic settings of the “Yanshan Movement”. During the Mid-Late Jurassic (165±5 Ma), great readjustment of plate amalgamation kinematics took place in East Asia and the tectonic regime underwent great transformation, thus initiating a new tectonic regime in which the North China Block was the center and different plates converged toward it from the north, east and southwest and forming the “East Asia convergent” tectonic system characterized by intracontinental subduction and orogeny. As a consequence, the crustal lithosphere of the East Asian continent thickened considerably during the Late Jurassic, followed immediately by Early Cretaceous substantial lithospheric thinning and craton destruction featured by drastic lithospheric extension and widespread volcano-magmatic activities, resulting in a major biotic turnover from the Yanliao biota to Jehol Biota. Such a tremendous tectonic event that took place in the continent of China and East Asia is the basic connotation of the “Yanshan Movement”. In the paper, according to the deformation patterns, geodynamic settings and deep processes, the “Yanshan Movement” is redefined as the Late Jurassic East Asian multi-directional plate convergent tectonic regime and its associated extensive intracontinental orogeny and great tectonic change that started at -165±5 Ma. The substantial lithospheric attenuation in East China is considered the post-effect of the Yanshanian intracontinental orogeny and deformation.
基金This work was supported by the National Natural Science Foundation of China(Nos.92163209,21821005 and 51932001)the Beijing Natural Science Foundation,China(No.JQ22004).
文摘Multi-fountional hollow structures have emerged as promising platforms for intelligent drug delivery due to their unique properties,such as high loading capacities and programmed drug release.In particular,hollow multishell structures(HoMSs)with multilevel shell and space can regulate the molecular-level interaction between drugs and materials,so as to achieve the temporal-spatial order and sequential release of drugs.The anisotropic hollow structures can control the drug diffusion process by inducing the macroscopic interface flow through autonomous movement,realizing the targeted drug transport and release.In this paper,a key focus will be HoMSs with their temporal-ordered architectures and anisotropic hollow carriers with directional movement.Their synthesis mechanisms,structure-property relationships,smartly programmed drug delivery and biomedical applications will be discussed,providing insights into designing next-generation intelligent drug carriers.