剩余使用寿命(remaining useful life,RUL)预测在现代工业中占有重要地位,如何提高剩余使用寿命预测的准确性已经成为当今研究的热点。传统的剩余使用寿命预测方式是采用基于模型的方法进行预测,需要人工提取特征,不能自动地学习特征信...剩余使用寿命(remaining useful life,RUL)预测在现代工业中占有重要地位,如何提高剩余使用寿命预测的准确性已经成为当今研究的热点。传统的剩余使用寿命预测方式是采用基于模型的方法进行预测,需要人工提取特征,不能自动地学习特征信息,无法获得原始数据与剩余使用寿命之间的复杂映射关系。该研究提出一种基于双向长短期记忆网络(bi-directional long short term memory,BiLSTM)与注意力机制的剩余使用寿命预测模型,与已有的剩余使用寿命预测方法不同之处在于:直接将获取的原始时间序列输入到BiLSTM神经网络中,通过BiLSTM自动地提取设备状态特征信息;然后利用注意力机制对特征分配不同的权重,这样可以更准确地提取设备的健康状态信息。进行了发动机和轴承剩余使用寿命预测试验,并与长短期记忆网络(long short-term memory,LSTM)模型和BiLSTM剩余使用寿命预测模型进行比较,试验结果表明提出的BiLSTM与注意力机制相结合的模型能够更准确地进行剩余使用寿命预测,具有应用价值。展开更多
传统光伏发电功率预测存在因气象因素特征提取不综合不精确而导致预测精度不高的问题.为了充分挖掘气象因素对光伏出力的影响,并有效利用深度学习技术在非线性拟合方面的优势,本文提出了一种基于气象因素充分挖掘的双向长短期记忆(Bi-di...传统光伏发电功率预测存在因气象因素特征提取不综合不精确而导致预测精度不高的问题.为了充分挖掘气象因素对光伏出力的影响,并有效利用深度学习技术在非线性拟合方面的优势,本文提出了一种基于气象因素充分挖掘的双向长短期记忆(Bi-directional Long Short Term Memory,BiLSTM)网络光伏发电短期功率预测方法.在对原始数据进行异常值及标准化处理的基础上,采用K近邻算法(K-Nearest Neighbor,KNN)在外界温度、湿度、压强等诸多气象因素中充分挖掘影响光伏出力的关键因素,重构多元数据序列,并在探索输入层时间步长、模型层数及每层维数等超参数的合理设置方案的基础上,构建BiLSTM网络模型,实现光伏发电短期功率的高精度预测.仿真结果表明,与KNN、深度信念网络(DBN)、BiLSTM、PCA-LSTM等经典方法比较,所提KNN-BiLSTM方法具有更高的预测精度.展开更多
针对现有恶意域名检测方法对新出现的恶意域名检测精度不高的问题,提出一种双层注意力CNN-BiLSTM的恶意域名检测算法。首先,利用卷积神经网络(Convolutional Neural Networks,CNN)和字符注意力编码块,提取域名在字符层的全局深度语义特...针对现有恶意域名检测方法对新出现的恶意域名检测精度不高的问题,提出一种双层注意力CNN-BiLSTM的恶意域名检测算法。首先,利用卷积神经网络(Convolutional Neural Networks,CNN)和字符注意力编码块,提取域名在字符层的全局深度语义特征;然后,利用双向长短期记忆神经网络(Bi-Directional Long Short Term Memory,BiLSTM)和字节注意力编码块,细粒度的提取字节层的局部语义特征;最后,利用训练的分类器进行合法域名与恶意域名的分类。通过在多个家族恶意域名数据集上进行测试,结果表明,相比当前主流的恶意域名检测模型,文中模型在合法域名与恶意域名的二分类任务中优势显然;在更具挑战性的家族恶意域名检测的多分类任务中同样表现良好。展开更多
文摘剩余使用寿命(remaining useful life,RUL)预测在现代工业中占有重要地位,如何提高剩余使用寿命预测的准确性已经成为当今研究的热点。传统的剩余使用寿命预测方式是采用基于模型的方法进行预测,需要人工提取特征,不能自动地学习特征信息,无法获得原始数据与剩余使用寿命之间的复杂映射关系。该研究提出一种基于双向长短期记忆网络(bi-directional long short term memory,BiLSTM)与注意力机制的剩余使用寿命预测模型,与已有的剩余使用寿命预测方法不同之处在于:直接将获取的原始时间序列输入到BiLSTM神经网络中,通过BiLSTM自动地提取设备状态特征信息;然后利用注意力机制对特征分配不同的权重,这样可以更准确地提取设备的健康状态信息。进行了发动机和轴承剩余使用寿命预测试验,并与长短期记忆网络(long short-term memory,LSTM)模型和BiLSTM剩余使用寿命预测模型进行比较,试验结果表明提出的BiLSTM与注意力机制相结合的模型能够更准确地进行剩余使用寿命预测,具有应用价值。
文摘传统光伏发电功率预测存在因气象因素特征提取不综合不精确而导致预测精度不高的问题.为了充分挖掘气象因素对光伏出力的影响,并有效利用深度学习技术在非线性拟合方面的优势,本文提出了一种基于气象因素充分挖掘的双向长短期记忆(Bi-directional Long Short Term Memory,BiLSTM)网络光伏发电短期功率预测方法.在对原始数据进行异常值及标准化处理的基础上,采用K近邻算法(K-Nearest Neighbor,KNN)在外界温度、湿度、压强等诸多气象因素中充分挖掘影响光伏出力的关键因素,重构多元数据序列,并在探索输入层时间步长、模型层数及每层维数等超参数的合理设置方案的基础上,构建BiLSTM网络模型,实现光伏发电短期功率的高精度预测.仿真结果表明,与KNN、深度信念网络(DBN)、BiLSTM、PCA-LSTM等经典方法比较,所提KNN-BiLSTM方法具有更高的预测精度.
文摘针对现有恶意域名检测方法对新出现的恶意域名检测精度不高的问题,提出一种双层注意力CNN-BiLSTM的恶意域名检测算法。首先,利用卷积神经网络(Convolutional Neural Networks,CNN)和字符注意力编码块,提取域名在字符层的全局深度语义特征;然后,利用双向长短期记忆神经网络(Bi-Directional Long Short Term Memory,BiLSTM)和字节注意力编码块,细粒度的提取字节层的局部语义特征;最后,利用训练的分类器进行合法域名与恶意域名的分类。通过在多个家族恶意域名数据集上进行测试,结果表明,相比当前主流的恶意域名检测模型,文中模型在合法域名与恶意域名的二分类任务中优势显然;在更具挑战性的家族恶意域名检测的多分类任务中同样表现良好。