[Objective] This study aimed to compare the effects of sublimed sulfur and acaricide on controlling bee mites.[Method] Three independent experiments were carried out in the same apiary during 2007-2009.[Results] The r...[Objective] This study aimed to compare the effects of sublimed sulfur and acaricide on controlling bee mites.[Method] Three independent experiments were carried out in the same apiary during 2007-2009.[Results] The results showed that this method is effective in eliminating mites settled on combs or hidden during pupae phase,but not in controlling the mites parasitized on adult bees.The control effect on killing Varroa destructor after treated appeared optimal in the first day and then decreased,and that on killing Tvopilaelaps clareae happened in the second day.The results indicated that the effect would be much better if the bees can be treated 1 time to 2 times again in the following 2-5 days after the first treatment.Back to data pool,we found that the treatment of sublimed sulfur paired with acaricide is effective in controlling V.destructor and T.clareae.[Conclusion] This technique could facilitate the apicultural production in the regions suffered from V.destructor and T.clareae.展开更多
The potato rot nematode(Ditylenchus destructor) is a very economically important nematode in agronomic and horticultural plants worldwide. In this study, 43 populations of D. destructor were collected from different h...The potato rot nematode(Ditylenchus destructor) is a very economically important nematode in agronomic and horticultural plants worldwide. In this study, 43 populations of D. destructor were collected from different hosts across China, including 37 populations from Chinese herbal medicine plants. Obtained sequences of ITS-rDNA and D2–D3of 28S-rDNA genes of D. destructor were compared and analyzed. Nine types of significant length variations in ITS sequences were observed among all populations. The differences in ITS1 length were mainly caused by the presence of repetitive elements with substantial base substitutions. Reconstructions of ITS1 secondary structures showed that the minisatellites formed a stem structure. Ten haplotypes were observed in all populations based on mutations and variations of helix H9. Among them, 3 known haplotypes(A–C) were found in 7 populations isolated from potato,sweet potato, and Codonopsis pilosula, and 7 unique haplotypes were found in other 36 populations collected from C. pilosula and Angelica sinensis compared with 7 haplotypes(A–G) according to Subbotin' system. These unique haplotypes were different from haplotypes A–G, and we named them as haplotypes H–N. The present results showed that a total of 14 haplotypes(A–N) of ITS-rDNA have been found in D. destructor. Phylogenetic analyses of ITSrDNA and D2–D3 showed that all populations of D. destructor were clustered into two major clades: one clade only containing haplotype A from sweet potato and the other containing haplotypes B–N from other plants. For further verification, PCR-ITS-RFLP profiles were conducted on 7 new haplotypes. Collectively, our study suggests that D. destructor populations on Chinese medicinal materials are very different from those on other hosts and this work provides a paradigm for relevant researches.展开更多
The Varroa mite,(Varroa destructor),is the worst threat to honey bee health worldwide.To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes...The Varroa mite,(Varroa destructor),is the worst threat to honey bee health worldwide.To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes on Varroa mite survival and reproduction.Double-stranded RNA (dsRNA)of six candidate genes (Da,Pros26S,RpL8, RpL11,RpPO and RpS13)were synthesized and each injected into Varroa mites,then mite survival and reproduction were assessed.Injection of dsRNA for Da (Daughterless)and Pros26S (Gene for proteasome 26S subunit adenosine triphosphatase)caused a significant reduction in mite survival,with 3.57%±1.94% and 30.03%±11.43% mites surviving at 72 h post-inj ection (hpi),respectively.Control mites injected with green fluorescent protein (GFP)-dsRNA showed survival rates of 81.95%±5.03% and 82.36 ±2.81%,respectively. Injections of dsRNA for four other genes (RpL8,RpL11,RpPO and RpS13)did not affect survival significantly,enabling us to assess their effect on Varroa mite reproduction.The number of female offspring per mite was significantly reduced for mites injected with dsRNA of each of these four genes compared to their GFP-dsRNA controls.Knockdown of the target genes was verified by real-time polymerase chain reaction for two genes important for reproduction (RpL8,RpL11)and one gene important for survival (Pros26S). In conclusion,through RNA interference,we have discovered two genes important for mite survival and four genes important for mite reproduction.These genes could be explored as possible targets for the control of Varroa destructor in the future.展开更多
Mite (Varroa destructor) is one of the most serious parasite threats to the honey bee (Apis mellifera) reared in China. The beekeepers mainly use the drug to control and kill the mite in the past years, but the ho...Mite (Varroa destructor) is one of the most serious parasite threats to the honey bee (Apis mellifera) reared in China. The beekeepers mainly use the drug to control and kill the mite in the past years, but the honey products may be contaminated and the mite is becoming drug-resistant. The main idea of this paper is to research the possibility of mite-resistant honeybee rearing by nutritional crossbreed. The larvae (Apis mellifera ligustica) are bred with the royal jelly of Apis carana carana, and then the morphological index of the worker generation, genotypic frequency and gene frequency of the MDH Ⅱ, genetic resemblance, and mite resistance are measured. The results show that: compared to the parent workers, the proboscis length, anterior wing area, the total length of the third and fourth dorsal plate of the abdomen, the length of the fourth dorsal plate of the tuberculum, the area of the sixth abdominal segment, and the area of wax mirrors are significantly different, but the differences in the brachium index, dactylus index, and wing claw are not significant. Moreover, there are some mutations in the genotypic frequency and gene frequency of the MDH Ⅱ. The mite resistance of the nutritional crossbreed worker is significantly higher. The morphological, physical, and biochemical characters, genetic resemblance, and the mite-resistant ability of the worker generation can be changed by nutritional crossbreeding. Nutritional crossbreeding can be a new way to breed the honeybee.展开更多
In this study, a rapid molecular identification method of Tribolium destructor was established with PCR and PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technology. According to the ...In this study, a rapid molecular identification method of Tribolium destructor was established with PCR and PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technology. According to the results, ( 1 ) with PCR method, specific primers were designed based on CO1 gene of T. destructor for PCR amplification, and electrophoresis detection confirmed that PCR method could be used to rapidly and accurately identify T. destructor; (2) with PCR-RFLP method, two pairs of degenerate primers were used to amplify CO1 gene of Tribolium species, PCR products were digested with HindIII and detected by electrophoresis, results indicated that PCR-RFLP method could also be used for rapid identification of T. destructor in quarantine practice.展开更多
A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-t...A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-terminals. The mature putative proteins are small, acidic proteins with calculated molecular masses of 14.5 to 15.3 kDa, and isoelectric points from 4.56 to 4.88. Northern blot analysis revealed that these genes are expressed predominantly in the gut of Hessian fly larvae and pupae. Two related genes, GIOK1 and GIOK2, were isolated as tandem repeats. Both genes contain three exons and two introns. The intron/exon boundaries were conserved in terms of amino acid encoding, suggesting that they arose by gene duplication. The fact that the frequency of this group of clones in a gut cDNA library higher than that of total cDNA clones encoding digestive enzymes suggested that this group of proteins may perform an important function in the gut physiology of this insect. However, the exact functions of these proteins are as yet known since no sequence similarity could be identified between these proteins and any known sequences in public databases using standard methods.展开更多
Salivary proteins are the initial contact between sedentary insect pests and their host plants. It is expected that one or more salivary proteins mediate the interaction between Hessian fly and wheat, in which a feedi...Salivary proteins are the initial contact between sedentary insect pests and their host plants. It is expected that one or more salivary proteins mediate the interaction between Hessian fly and wheat, in which a feeding site is established to the benefit of the fly. A survey of 52 loci annotated as insect secreted salivary proteins was conducted in 384 individuals evenly distributed among eight biotypes of Hessian fly (B, C, D, E, GP, L, O, and vH9). Amplicons were sequenced with Illumina, and sequence reads were aligned to the reference sequences from which primers had been designed. Positions of consistent base variation (998 in all) were identified and tabulated by biotype. No varying position was associated with biotype-wide virulence to any one of wheat resistance genes H3, H5, H6, H7/H8, H9, H11, H13, and H26. The multiplate pooling strategy utilized in this study is an effective, affordable way to reveal the genotype of hundreds of individuals at tens of genetic loci.展开更多
[Objective] The aim was to o research the control effect to Varroa destructor and Tropilaeplaps clareae whit new raising management methods, and reduce the pollution caused by drug treatment of bee. [ Metkod] We took ...[Objective] The aim was to o research the control effect to Varroa destructor and Tropilaeplaps clareae whit new raising management methods, and reduce the pollution caused by drug treatment of bee. [ Metkod] We took the method that was replace the hive and comb on test col- onies with the comb Formalin soaking liquid used three days after the dry and sterilization in advance with the hive. The test groups were 10 colonies randomly selected from the disinfected comb in the breeding. This was the first kind of method. The control groups were 10 colonies randomly se- lected by the conventional breeding management methods. From January 20th, statistic analysis on parasitic situation of bees once every month be- tween the two methods, and take corresponding measures to prevent and control the varroa mite according to the varroa mite parasitic number in time, then the control effect of mite between the two methods were compared with. [ Result] The results showed that the first method was better than the second one in V. destructor, the control time of T. clareae delayed about one month [ Conclusion] Good breeding method could restrain I V. destructor and T. clareae parasitism, speeded up the colony development, and reduced the pollution of chemical drugs on bee products, regar- dod as a kind good method of controlling bee mites to make use of the feeding and management technology.展开更多
The Hessian fly(HF,Mayetiola destructor)is one of the destructive pests of wheat(Triticum aestivum L.)worldwide.Resistant cultivars can effectively minimize wheat damage due to this insect pest.To identify new quantit...The Hessian fly(HF,Mayetiola destructor)is one of the destructive pests of wheat(Triticum aestivum L.)worldwide.Resistant cultivars can effectively minimize wheat damage due to this insect pest.To identify new quantitative trait loci(QTL)for HF resistance,a population of recombinant inbred lines(RILs)was developed from a cross between the HF-resistant wheat cultivar‘Chokwang’and susceptible wheat‘Ning 7840’,and phenotyped for responses to HF attack.A linkage map was constructed using 1147 single nucleotide polymorphism(SNP)markers generated from genotyping-by-sequencing(GBS).One major QTL,QHf.hwwg-6 BS,for HF-resistance was identified on chromosome arm 6 BS,which explained up to84.0%of the phenotypic variation and was contributed by Chokwang.Two RILs showed recombination in the candidate interval of QHf.hwwg-6 BS,which delimited QHf.hwwg-6 BS to a 4.75 Mb physical interval between 6,028,601 bp and 10,779,424 bp on chromosome arm 6 BS of IWGSC Chinese Spring reference genome Ref Seq v2.0.Seven GBS-SNPs in the candidate interval were converted into Kompetitive allele specific polymerase chain reaction(KASP)markers.Two of them,KASP-6 B112698 and KASP-6 B7901215,were validated in a U.S.winter wheat panel.KASP-6 B112698 was nearly diagnostic,thus can be used to screen QHf.hwwg-6 BS and pyramid it with other resistance genes in breeding programs.展开更多
基金Supported by Special Fund for the Construction of Modern Agricultural Technology System(NYCYTX-43-syz3)~~
文摘[Objective] This study aimed to compare the effects of sublimed sulfur and acaricide on controlling bee mites.[Method] Three independent experiments were carried out in the same apiary during 2007-2009.[Results] The results showed that this method is effective in eliminating mites settled on combs or hidden during pupae phase,but not in controlling the mites parasitized on adult bees.The control effect on killing Varroa destructor after treated appeared optimal in the first day and then decreased,and that on killing Tvopilaelaps clareae happened in the second day.The results indicated that the effect would be much better if the bees can be treated 1 time to 2 times again in the following 2-5 days after the first treatment.Back to data pool,we found that the treatment of sublimed sulfur paired with acaricide is effective in controlling V.destructor and T.clareae.[Conclusion] This technique could facilitate the apicultural production in the regions suffered from V.destructor and T.clareae.
基金supported by the National Natural Science Foundation of China (31760507)the National Key R&D Program of China (2018YFC1706301)。
文摘The potato rot nematode(Ditylenchus destructor) is a very economically important nematode in agronomic and horticultural plants worldwide. In this study, 43 populations of D. destructor were collected from different hosts across China, including 37 populations from Chinese herbal medicine plants. Obtained sequences of ITS-rDNA and D2–D3of 28S-rDNA genes of D. destructor were compared and analyzed. Nine types of significant length variations in ITS sequences were observed among all populations. The differences in ITS1 length were mainly caused by the presence of repetitive elements with substantial base substitutions. Reconstructions of ITS1 secondary structures showed that the minisatellites formed a stem structure. Ten haplotypes were observed in all populations based on mutations and variations of helix H9. Among them, 3 known haplotypes(A–C) were found in 7 populations isolated from potato,sweet potato, and Codonopsis pilosula, and 7 unique haplotypes were found in other 36 populations collected from C. pilosula and Angelica sinensis compared with 7 haplotypes(A–G) according to Subbotin' system. These unique haplotypes were different from haplotypes A–G, and we named them as haplotypes H–N. The present results showed that a total of 14 haplotypes(A–N) of ITS-rDNA have been found in D. destructor. Phylogenetic analyses of ITSrDNA and D2–D3 showed that all populations of D. destructor were clustered into two major clades: one clade only containing haplotype A from sweet potato and the other containing haplotypes B–N from other plants. For further verification, PCR-ITS-RFLP profiles were conducted on 7 new haplotypes. Collectively, our study suggests that D. destructor populations on Chinese medicinal materials are very different from those on other hosts and this work provides a paradigm for relevant researches.
基金the Almond Board of California,the Foundation for the Preservation of Honey Bees, the National Honey Board,the Michigan State University GREEEN Program,Michigan Beekeepers Association, all to ZYH,and National Natural Science Foundation of China (#31302040,#31660633)General Project of Jiangxi Provincial Department of Education (#GJJ14153)a fellowship from the China Scholarship Council (#201406825006)(to XB).
文摘The Varroa mite,(Varroa destructor),is the worst threat to honey bee health worldwide.To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes on Varroa mite survival and reproduction.Double-stranded RNA (dsRNA)of six candidate genes (Da,Pros26S,RpL8, RpL11,RpPO and RpS13)were synthesized and each injected into Varroa mites,then mite survival and reproduction were assessed.Injection of dsRNA for Da (Daughterless)and Pros26S (Gene for proteasome 26S subunit adenosine triphosphatase)caused a significant reduction in mite survival,with 3.57%±1.94% and 30.03%±11.43% mites surviving at 72 h post-inj ection (hpi),respectively.Control mites injected with green fluorescent protein (GFP)-dsRNA showed survival rates of 81.95%±5.03% and 82.36 ±2.81%,respectively. Injections of dsRNA for four other genes (RpL8,RpL11,RpPO and RpS13)did not affect survival significantly,enabling us to assess their effect on Varroa mite reproduction.The number of female offspring per mite was significantly reduced for mites injected with dsRNA of each of these four genes compared to their GFP-dsRNA controls.Knockdown of the target genes was verified by real-time polymerase chain reaction for two genes important for reproduction (RpL8,RpL11)and one gene important for survival (Pros26S). In conclusion,through RNA interference,we have discovered two genes important for mite survival and four genes important for mite reproduction.These genes could be explored as possible targets for the control of Varroa destructor in the future.
文摘Mite (Varroa destructor) is one of the most serious parasite threats to the honey bee (Apis mellifera) reared in China. The beekeepers mainly use the drug to control and kill the mite in the past years, but the honey products may be contaminated and the mite is becoming drug-resistant. The main idea of this paper is to research the possibility of mite-resistant honeybee rearing by nutritional crossbreed. The larvae (Apis mellifera ligustica) are bred with the royal jelly of Apis carana carana, and then the morphological index of the worker generation, genotypic frequency and gene frequency of the MDH Ⅱ, genetic resemblance, and mite resistance are measured. The results show that: compared to the parent workers, the proboscis length, anterior wing area, the total length of the third and fourth dorsal plate of the abdomen, the length of the fourth dorsal plate of the tuberculum, the area of the sixth abdominal segment, and the area of wax mirrors are significantly different, but the differences in the brachium index, dactylus index, and wing claw are not significant. Moreover, there are some mutations in the genotypic frequency and gene frequency of the MDH Ⅱ. The mite resistance of the nutritional crossbreed worker is significantly higher. The morphological, physical, and biochemical characters, genetic resemblance, and the mite-resistant ability of the worker generation can be changed by nutritional crossbreeding. Nutritional crossbreeding can be a new way to breed the honeybee.
基金Supported by Science and Technology Project of Jiangsu Entry and Exit Inspection and Quarantine Bureau(2010KJ06)
文摘In this study, a rapid molecular identification method of Tribolium destructor was established with PCR and PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) technology. According to the results, ( 1 ) with PCR method, specific primers were designed based on CO1 gene of T. destructor for PCR amplification, and electrophoresis detection confirmed that PCR method could be used to rapidly and accurately identify T. destructor; (2) with PCR-RFLP method, two pairs of degenerate primers were used to amplify CO1 gene of Tribolium species, PCR products were digested with HindIII and detected by electrophoresis, results indicated that PCR-RFLP method could also be used for rapid identification of T. destructor in quarantine practice.
文摘A group of related genes has been isolated and characterized from the gut of Hessian fly larvae [Mayetiola destructor (Say)]. Members in this group appear to encode proteins with secretary signal peptides at the N-terminals. The mature putative proteins are small, acidic proteins with calculated molecular masses of 14.5 to 15.3 kDa, and isoelectric points from 4.56 to 4.88. Northern blot analysis revealed that these genes are expressed predominantly in the gut of Hessian fly larvae and pupae. Two related genes, GIOK1 and GIOK2, were isolated as tandem repeats. Both genes contain three exons and two introns. The intron/exon boundaries were conserved in terms of amino acid encoding, suggesting that they arose by gene duplication. The fact that the frequency of this group of clones in a gut cDNA library higher than that of total cDNA clones encoding digestive enzymes suggested that this group of proteins may perform an important function in the gut physiology of this insect. However, the exact functions of these proteins are as yet known since no sequence similarity could be identified between these proteins and any known sequences in public databases using standard methods.
文摘Salivary proteins are the initial contact between sedentary insect pests and their host plants. It is expected that one or more salivary proteins mediate the interaction between Hessian fly and wheat, in which a feeding site is established to the benefit of the fly. A survey of 52 loci annotated as insect secreted salivary proteins was conducted in 384 individuals evenly distributed among eight biotypes of Hessian fly (B, C, D, E, GP, L, O, and vH9). Amplicons were sequenced with Illumina, and sequence reads were aligned to the reference sequences from which primers had been designed. Positions of consistent base variation (998 in all) were identified and tabulated by biotype. No varying position was associated with biotype-wide virulence to any one of wheat resistance genes H3, H5, H6, H7/H8, H9, H11, H13, and H26. The multiplate pooling strategy utilized in this study is an effective, affordable way to reveal the genotype of hundreds of individuals at tens of genetic loci.
基金funded Modern Agricultural Technology System Construction of Special Funds(NYCYTX-43-syz3)
文摘[Objective] The aim was to o research the control effect to Varroa destructor and Tropilaeplaps clareae whit new raising management methods, and reduce the pollution caused by drug treatment of bee. [ Metkod] We took the method that was replace the hive and comb on test col- onies with the comb Formalin soaking liquid used three days after the dry and sterilization in advance with the hive. The test groups were 10 colonies randomly selected from the disinfected comb in the breeding. This was the first kind of method. The control groups were 10 colonies randomly se- lected by the conventional breeding management methods. From January 20th, statistic analysis on parasitic situation of bees once every month be- tween the two methods, and take corresponding measures to prevent and control the varroa mite according to the varroa mite parasitic number in time, then the control effect of mite between the two methods were compared with. [ Result] The results showed that the first method was better than the second one in V. destructor, the control time of T. clareae delayed about one month [ Conclusion] Good breeding method could restrain I V. destructor and T. clareae parasitism, speeded up the colony development, and reduced the pollution of chemical drugs on bee products, regar- dod as a kind good method of controlling bee mites to make use of the feeding and management technology.
基金the National Research Initiative Competitive Grant(2017-67007-25939)from the U.S.Department of Agriculture,National Institute of Food and Agriculture。
文摘The Hessian fly(HF,Mayetiola destructor)is one of the destructive pests of wheat(Triticum aestivum L.)worldwide.Resistant cultivars can effectively minimize wheat damage due to this insect pest.To identify new quantitative trait loci(QTL)for HF resistance,a population of recombinant inbred lines(RILs)was developed from a cross between the HF-resistant wheat cultivar‘Chokwang’and susceptible wheat‘Ning 7840’,and phenotyped for responses to HF attack.A linkage map was constructed using 1147 single nucleotide polymorphism(SNP)markers generated from genotyping-by-sequencing(GBS).One major QTL,QHf.hwwg-6 BS,for HF-resistance was identified on chromosome arm 6 BS,which explained up to84.0%of the phenotypic variation and was contributed by Chokwang.Two RILs showed recombination in the candidate interval of QHf.hwwg-6 BS,which delimited QHf.hwwg-6 BS to a 4.75 Mb physical interval between 6,028,601 bp and 10,779,424 bp on chromosome arm 6 BS of IWGSC Chinese Spring reference genome Ref Seq v2.0.Seven GBS-SNPs in the candidate interval were converted into Kompetitive allele specific polymerase chain reaction(KASP)markers.Two of them,KASP-6 B112698 and KASP-6 B7901215,were validated in a U.S.winter wheat panel.KASP-6 B112698 was nearly diagnostic,thus can be used to screen QHf.hwwg-6 BS and pyramid it with other resistance genes in breeding programs.