The aquatic plants are often found in natural rivers,and they affect the channel flow structure significantly.To study the effects of the vegetation density a(the frontal area per volume)on the flow velocity character...The aquatic plants are often found in natural rivers,and they affect the channel flow structure significantly.To study the effects of the vegetation density a(the frontal area per volume)on the flow velocity characteristics,rigid bamboo circular cylinders are chosen as the model emergent vegetation.In the experiments,the density of the vegetation takes various values while all other flow parameters are kept constant.A 3-D acoustic Doppler velocimeter(ADV)is used to measure the local flow velocities for different vegetation densities.The results show that the existence of the vegetation patch leads to an increase of the depth-averaged velocity on the right and left sides behind the vegetation patch,and it increases monotonically with the vegetation density.For different vegetation densities,the lateral distribution of the stream-wise velocity behind the vegetation patch follows approximately an S-shaped profile when a≤60 m-1,and a logarithmic profile if a>60 m-1.The vertical distribution of the stream-wise velocity along the channel varies with the vegetation density and also follows an S-shaped distribution in a certain range,with the locations and the ranges being affected by the vegetation density.展开更多
Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and a...Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and an outer sea is weak compared with the supply of contaminant. Under this situation, a method to improve the water quality by 3-dimensional small unsymmetrical structures has been proposed by Komatsu et al. In this paper, several numerical simulations of the tidal current and concentration for various arrangements of bottom roughness in a semi-enclosed model bay are carfled out with a depth-averaged 2-D numerical model. The model is solved by the hybrid finite analytic method with nonstaggered grid. And the SIMPLES algorithm with Rhie and Chow' s momentum interpolation technique is used for the simulation. The effect of Komatsu' s method for water purification is examined by numerical simulation. The result of numerical experiment indicates that it is possible to generate a new tidal residual current and to activate a tidal exchange by bottom roughness arrangement only.展开更多
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the un...The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.展开更多
Study of the how held around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. Bu...Study of the how held around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. But very little has been known in its mechanism when the viscous effects is taken into consideration. As a part of the efforts to tackle the problem, a numerical model is presented for the simulation of the how held around a fixed vertical truncated circular cylinder subjected to waves and viscous currents based on the depth-averaged Reynolds equations and depth-averaged k-epsilon turbulence model. Finite difference method with a suitable iteration defect correct method and an artificial open boundary condition are adopted in the numerical process. Numerical results presented relate to the interactions of a pure incident viscous current with Reynolds number Re = 10(5), a pure incident regular sinusoidal wave, and the coexisting of viscous current and wave with a circular cylinder, respectively. Flow fields associated with the hydrodynamic coefficients of the fixed cylinder, as well as corresponding free surface profiles and wave amplitudes, are discussed. The present method is found to be relatively straightforward, computationally effective and numerically stable for treating the problem of interactions among waves, viscous currents and bodies.展开更多
A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derive...A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.展开更多
A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation...A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation and the momentum exchange between the vegetation and non-vegetation zones are considered. The depth-averaged streamwise velocity is solved by the singular perturbation method, while the Reynolds stress is calculated based on the results of the streamwise velocity. Comparisons with the experimental data indicate that the accuracy of prediction is significantly improved by introducing a term for the secondary current in the model. A sensitivity analysis shows that a sound choice of the secondary current intensity coefficient is important for an accurate prediction of the depth-averaged streamwise velocity near the vegetation and non-vegetation interfaces, and the drag force coefficient is crucial for predictions in the vegetation zone.展开更多
This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant tran...This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.展开更多
The paper mainly focuses on describing the modification made to a new depth-averaged two-equation turbulent closure model based on the revised κ-ω model recently. In the case of side discharged jets with tempera- t...The paper mainly focuses on describing the modification made to a new depth-averaged two-equation turbulent closure model based on the revised κ-ω model recently. In the case of side discharged jets with tempera- ture difference and transverse current, the new model has been investigated numerically in detail. As a practical example of application to use the new model, the side discharge of the cooling water from three outlets into a natu- ral river on one bank has been simulated, and the geomorphic variation under water has been treated suitably. Two depth-averaged models, and have been used, the later was the unique one up to the present. Emphasis is placed on the comparative research with different models under the same computational conditions. It has been verified that if the discharged flow rates are relatively small, when the pollutant plume in the near and transitional zons is predicted, the agreement with experimental and field data simulated by the model is better than by the model or other methods commonly used in engineering.展开更多
This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters...This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k-ε,k-w, and k-w, were used to close the non-simplified quasi-three-dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k-w model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.展开更多
Based on N - S equations, the depth-averaged stress - flux algebraic model is used to simu late the anisotropic transport and dispersion when hot water or pollutants are side-discharged into large water they. In this ...Based on N - S equations, the depth-averaged stress - flux algebraic model is used to simu late the anisotropic transport and dispersion when hot water or pollutants are side-discharged into large water they. In this model the depth-averaged continuity, momentum and concentration equations are employed, and the tide is asymmetric. The results show the changes of velocity field and pollutant con centration with time and space during one tidal period.展开更多
This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms...This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.展开更多
The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance cau...The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance caused by vegetation is expressed by the theory of poroelasticity. Considering the influence of a secondary flow, the momentum equation can be simplified. The momentum equation is nondimensionalized to obtain a smooth solution for the lateral distribution of the longitudinal velocity. To verify the model, an acoustic Doppler velocimeter (ADV) is used to measure the velocity field in a rectangular open channel partially with emergent artificial rigid vegetation. Comparisons between the measured data and the computed results show that the method can predict the transverse distributions of stream-wise velocities in turbulent flows in a rectangular channel with partial vegetation.展开更多
A depth averaged nonlinear k ε model for turbulent flows in complex geometries has been developed in a boundary fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for ...A depth averaged nonlinear k ε model for turbulent flows in complex geometries has been developed in a boundary fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for staggered grids to analyze flows in a 90° bend. This paper describes how to change a program in rectangular coordinate into a boundary fitted coordinate. The results compare well with experimental data for flow in a meandering channel showing the efficiency of the model and the discrete method.展开更多
In this paper,we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities(DACVs) of underwater gliders.The hybrid model is based on a discrete wavelet transform(DWT)...In this paper,we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities(DACVs) of underwater gliders.The hybrid model is based on a discrete wavelet transform(DWT),a deep belief network(DBN),and a least squares support vector machine(LSSVM).The original DACV series are first decomposed into several high-and one low-frequency subseries by DWT.Then,DBN is used for high-frequency component forecasting,and the LSSVM model is adopted for low-frequency subseries.The effectiveness of the proposed model is verified by two groups of DACV data from sea trials in the South China Sea.Based on four general error criteria,the forecast performance of the proposed model is demonstrated.The comparison models include some well-recognized single models and some related hybrid models.The performance of the proposed model outperformed those of the other methods indicated above.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51539007,51479128 and 51609160)the National Key Research and Development Program of China(Grant No.2016YFC0402302).
文摘The aquatic plants are often found in natural rivers,and they affect the channel flow structure significantly.To study the effects of the vegetation density a(the frontal area per volume)on the flow velocity characteristics,rigid bamboo circular cylinders are chosen as the model emergent vegetation.In the experiments,the density of the vegetation takes various values while all other flow parameters are kept constant.A 3-D acoustic Doppler velocimeter(ADV)is used to measure the local flow velocities for different vegetation densities.The results show that the existence of the vegetation patch leads to an increase of the depth-averaged velocity on the right and left sides behind the vegetation patch,and it increases monotonically with the vegetation density.For different vegetation densities,the lateral distribution of the stream-wise velocity behind the vegetation patch follows approximately an S-shaped profile when a≤60 m-1,and a logarithmic profile if a>60 m-1.The vertical distribution of the stream-wise velocity along the channel varies with the vegetation density and also follows an S-shaped distribution in a certain range,with the locations and the ranges being affected by the vegetation density.
基金This work was supported bythe National Science Fundfor Distinguished Young Scholars of Ministry of Eduction,Chi-na
文摘Nowadays there are some chronic serious environmental problems, such as eutrophication, blue tide and so on, in a complicated coastal zone or a semi-enclosed bay, because the water exchanges between an inner bay and an outer sea is weak compared with the supply of contaminant. Under this situation, a method to improve the water quality by 3-dimensional small unsymmetrical structures has been proposed by Komatsu et al. In this paper, several numerical simulations of the tidal current and concentration for various arrangements of bottom roughness in a semi-enclosed model bay are carfled out with a depth-averaged 2-D numerical model. The model is solved by the hybrid finite analytic method with nonstaggered grid. And the SIMPLES algorithm with Rhie and Chow' s momentum interpolation technique is used for the simulation. The effect of Komatsu' s method for water purification is examined by numerical simulation. The result of numerical experiment indicates that it is possible to generate a new tidal residual current and to activate a tidal exchange by bottom roughness arrangement only.
基金the National Natural Science Foundation of China(Nos.50679061,50709025and50749031)
文摘The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.
基金The project supported by the National Natural Science Foundation of China Foundation of State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University
文摘Study of the how held around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. But very little has been known in its mechanism when the viscous effects is taken into consideration. As a part of the efforts to tackle the problem, a numerical model is presented for the simulation of the how held around a fixed vertical truncated circular cylinder subjected to waves and viscous currents based on the depth-averaged Reynolds equations and depth-averaged k-epsilon turbulence model. Finite difference method with a suitable iteration defect correct method and an artificial open boundary condition are adopted in the numerical process. Numerical results presented relate to the interactions of a pure incident viscous current with Reynolds number Re = 10(5), a pure incident regular sinusoidal wave, and the coexisting of viscous current and wave with a circular cylinder, respectively. Flow fields associated with the hydrodynamic coefficients of the fixed cylinder, as well as corresponding free surface profiles and wave amplitudes, are discussed. The present method is found to be relatively straightforward, computationally effective and numerically stable for treating the problem of interactions among waves, viscous currents and bodies.
基金Project supported by the National Natural Science Foundation of China(Nos.11171238,51279117,and 11072161)the Program for New Century Excellent Talents in University of China(No.NCET-13-0393)the National Science and Technology Ministry of China(No.2012BAB05B02)
文摘A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.51439007 and11372232)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130141110016)
文摘A numerical analysis model based on two-dimensional shallow water differential equations is presented for straight open-channel flow with partial vegetation across the channel. Both the drag force acting on vegetation and the momentum exchange between the vegetation and non-vegetation zones are considered. The depth-averaged streamwise velocity is solved by the singular perturbation method, while the Reynolds stress is calculated based on the results of the streamwise velocity. Comparisons with the experimental data indicate that the accuracy of prediction is significantly improved by introducing a term for the secondary current in the model. A sensitivity analysis shows that a sound choice of the secondary current intensity coefficient is important for an accurate prediction of the depth-averaged streamwise velocity near the vegetation and non-vegetation interfaces, and the drag force coefficient is crucial for predictions in the vegetation zone.
基金supported by FAPESP (Foundation for Supporting Research in So Paulo State), Brazil, of the PIPE Project (Grant No. 2006/56475-3)
文摘This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.
文摘The paper mainly focuses on describing the modification made to a new depth-averaged two-equation turbulent closure model based on the revised κ-ω model recently. In the case of side discharged jets with tempera- ture difference and transverse current, the new model has been investigated numerically in detail. As a practical example of application to use the new model, the side discharge of the cooling water from three outlets into a natu- ral river on one bank has been simulated, and the geomorphic variation under water has been treated suitably. Two depth-averaged models, and have been used, the later was the unique one up to the present. Emphasis is placed on the comparative research with different models under the same computational conditions. It has been verified that if the discharged flow rates are relatively small, when the pollutant plume in the near and transitional zons is predicted, the agreement with experimental and field data simulated by the model is better than by the model or other methods commonly used in engineering.
基金supported by FAPESP (Foundation for Supporting Research in So Paulo State), Brazil, of the PIPE Project (Grant No. 2006/56475-3)
文摘This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k-ε,k-w, and k-w, were used to close the non-simplified quasi-three-dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k-w model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.
文摘Based on N - S equations, the depth-averaged stress - flux algebraic model is used to simu late the anisotropic transport and dispersion when hot water or pollutants are side-discharged into large water they. In this model the depth-averaged continuity, momentum and concentration equations are employed, and the tide is asymmetric. The results show the changes of velocity field and pollutant con centration with time and space during one tidal period.
文摘This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.
基金supported by the National Natural Science Foundation of China (Nos. 10972163 and 51079102)the Fundamental Research Funds for the Central Universities (No. 2104001)
文摘The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance caused by vegetation is expressed by the theory of poroelasticity. Considering the influence of a secondary flow, the momentum equation can be simplified. The momentum equation is nondimensionalized to obtain a smooth solution for the lateral distribution of the longitudinal velocity. To verify the model, an acoustic Doppler velocimeter (ADV) is used to measure the velocity field in a rectangular open channel partially with emergent artificial rigid vegetation. Comparisons between the measured data and the computed results show that the method can predict the transverse distributions of stream-wise velocities in turbulent flows in a rectangular channel with partial vegetation.
文摘A depth averaged nonlinear k ε model for turbulent flows in complex geometries has been developed in a boundary fitted coordinate system. The SIMPLEC procedure is used to develop an economical discrete method for staggered grids to analyze flows in a 90° bend. This paper describes how to change a program in rectangular coordinate into a boundary fitted coordinate. The results compare well with experimental data for flow in a meandering channel showing the efficiency of the model and the discrete method.
基金The National Natural Science Foundation of China under contract Nos U1709202 and 51809127the Natural Science Foundation of Shanxi ProvinceChina under contract No.201901D211248。
文摘In this paper,we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities(DACVs) of underwater gliders.The hybrid model is based on a discrete wavelet transform(DWT),a deep belief network(DBN),and a least squares support vector machine(LSSVM).The original DACV series are first decomposed into several high-and one low-frequency subseries by DWT.Then,DBN is used for high-frequency component forecasting,and the LSSVM model is adopted for low-frequency subseries.The effectiveness of the proposed model is verified by two groups of DACV data from sea trials in the South China Sea.Based on four general error criteria,the forecast performance of the proposed model is demonstrated.The comparison models include some well-recognized single models and some related hybrid models.The performance of the proposed model outperformed those of the other methods indicated above.