随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denois...随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denoising Auto-Encoder,降噪自编码器)的网络结构基础上加入了LSTM(Long Short Term Memory,长短时记忆)的模型,将深度学习相关技术融入加密流量识别技术之中,使一直存在的难以处理高维数据以及特征提取等问题得到解决.展开更多
提出一种基于降噪自编码神经网络事件相关电位分析方法,首先建立3层神经网络结构,利用降噪自编码对神经网络进行初始化,实现了降噪自编码深度学习模型的无监督学习.从无标签数据中自动学习数据特征,通过优化模型训练得到的权值作为神经...提出一种基于降噪自编码神经网络事件相关电位分析方法,首先建立3层神经网络结构,利用降噪自编码对神经网络进行初始化,实现了降噪自编码深度学习模型的无监督学习.从无标签数据中自动学习数据特征,通过优化模型训练得到的权值作为神经网络初始化参数.其次,经过有标签的样本进行网络参数的微调即可完成对神经网络的训练,该方法有效解决了神经网络训练中因随机选择初始化参数,而导致网络易陷入局部极小的缺陷.最后,利用上述神经网络对第3届脑机接口竞赛数据集Data set Ⅱ(事件相关电位脑电信号)进行分类分析.实验结果表明:利用降噪自编码迭代2500次训练神经网络模型,在受试者A和受试者B样本数据叠加5次、10次、15次3种情况下获得的分类准确率分别为73.4%, 87.4%和97.2%.该最高准确率优于其他分类方法,比竞赛第1名联合支持向量机(SVM)分类器(ESVM)提高了0.7%,为事件相关电位脑电信号提供了一种深度学习分析方法.展开更多
文摘随着虚拟专用网(VPN)技术的广泛应用,实时VPN流量识别已成为网络管理和安全维护中越来越重要的任务.加密流量使得从原始流量中提取特征变得极具挑战性,现有的VPN流量识别方法通常存在高维数据特征提取困难的问题.提出了一种在DAE(Denoising Auto-Encoder,降噪自编码器)的网络结构基础上加入了LSTM(Long Short Term Memory,长短时记忆)的模型,将深度学习相关技术融入加密流量识别技术之中,使一直存在的难以处理高维数据以及特征提取等问题得到解决.
文摘提出一种基于降噪自编码神经网络事件相关电位分析方法,首先建立3层神经网络结构,利用降噪自编码对神经网络进行初始化,实现了降噪自编码深度学习模型的无监督学习.从无标签数据中自动学习数据特征,通过优化模型训练得到的权值作为神经网络初始化参数.其次,经过有标签的样本进行网络参数的微调即可完成对神经网络的训练,该方法有效解决了神经网络训练中因随机选择初始化参数,而导致网络易陷入局部极小的缺陷.最后,利用上述神经网络对第3届脑机接口竞赛数据集Data set Ⅱ(事件相关电位脑电信号)进行分类分析.实验结果表明:利用降噪自编码迭代2500次训练神经网络模型,在受试者A和受试者B样本数据叠加5次、10次、15次3种情况下获得的分类准确率分别为73.4%, 87.4%和97.2%.该最高准确率优于其他分类方法,比竞赛第1名联合支持向量机(SVM)分类器(ESVM)提高了0.7%,为事件相关电位脑电信号提供了一种深度学习分析方法.