It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimati...It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimation (CSS). The different preparing temperature effects on CdS/CdTe solar cells and deep-level impurities have been investigated by I-V and C-V measurements and deep level transient spectroscopy (DLTS). By comparison, less dark saturated current density, higher carrier concentration, and better photovoltaic performance are demonstrated in a 580℃sample. Also there is less deep-level impurity recombination, because the lower hole trap concentration is present in this sample. In addition, three deep levels, Ev + 0.341 eV(H4), E, + 0.226 eV(HS) and Ec - 0.147 eV(E3), are found in the 580℃sample, and the possible source of deep levels is analysed and discussed.展开更多
无论氢在电子器件内部以何种形式(H2分子、H原子或H+离子)存在,均会对电子器件电离损伤产生作用,进而影响器件的抗辐照能力。本文深入研究了氢气和空气气氛条件下1 Me V电子辐照栅控横向PNP(GLPNP)型双极晶体管的辐射损伤缺陷演化行为...无论氢在电子器件内部以何种形式(H2分子、H原子或H+离子)存在,均会对电子器件电离损伤产生作用,进而影响器件的抗辐照能力。本文深入研究了氢气和空气气氛条件下1 Me V电子辐照栅控横向PNP(GLPNP)型双极晶体管的辐射损伤缺陷演化行为。利用Keithley 4200SCS半导体参数测试仪对不同气氛下辐照过程中晶体管进行在线原位电性能参数测试,研究晶体管电性能退化与电子辐照注量和氢气深度之间的关系;基于栅扫技术(GS)和深能级瞬态谱技术(DLTS),研究双极晶体管中氢诱导电离损伤缺陷演化的基本特征。研究表明,与空气气氛相比,氢气气氛下电子辐照导致GLPNP的基极电流增加显著,而集电极电流明显降低,产生更多的氧化物电荷和界面态,这些现象均说明氢气加剧双极晶体管的电离辐射损伤。展开更多
An important problem of defect charging in electron-hole plasma in a semiconductor electronic device is investigated using the analogy of dust charging in dusty plasmas. This investigation yielded physical picture of ...An important problem of defect charging in electron-hole plasma in a semiconductor electronic device is investigated using the analogy of dust charging in dusty plasmas. This investigation yielded physical picture of the problem along with the mathematical model. Charging and discharging mechanism of charge carrier traps in a semiconductor elec-tronic device is also given. Potential applications of the study in semiconductor device technology are discussed. It would be interesting to find out how dust acoustic waves in electron-hole plasma in micro and nanoelectronic devices can be useful in finding out charge carrier trap properties of impurities or defects which serve as dust particles in elec-tron-hole (e-h) plasma. A new method based on an established technique “deep level transient spectroscopy” (DLTS) is described here suggesting the determination of properties of charge carrier traps in present and future semiconductor devices by measuring the frequency of dust acoustic waves (DAW). Relationship between frequency of DAW and properties of traps is described mathematically proposing the basis of a technique, called here, dust mode frequency deep level transient spectroscopy (DMF-DLTS).展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimation (CSS). The different preparing temperature effects on CdS/CdTe solar cells and deep-level impurities have been investigated by I-V and C-V measurements and deep level transient spectroscopy (DLTS). By comparison, less dark saturated current density, higher carrier concentration, and better photovoltaic performance are demonstrated in a 580℃sample. Also there is less deep-level impurity recombination, because the lower hole trap concentration is present in this sample. In addition, three deep levels, Ev + 0.341 eV(H4), E, + 0.226 eV(HS) and Ec - 0.147 eV(E3), are found in the 580℃sample, and the possible source of deep levels is analysed and discussed.
文摘无论氢在电子器件内部以何种形式(H2分子、H原子或H+离子)存在,均会对电子器件电离损伤产生作用,进而影响器件的抗辐照能力。本文深入研究了氢气和空气气氛条件下1 Me V电子辐照栅控横向PNP(GLPNP)型双极晶体管的辐射损伤缺陷演化行为。利用Keithley 4200SCS半导体参数测试仪对不同气氛下辐照过程中晶体管进行在线原位电性能参数测试,研究晶体管电性能退化与电子辐照注量和氢气深度之间的关系;基于栅扫技术(GS)和深能级瞬态谱技术(DLTS),研究双极晶体管中氢诱导电离损伤缺陷演化的基本特征。研究表明,与空气气氛相比,氢气气氛下电子辐照导致GLPNP的基极电流增加显著,而集电极电流明显降低,产生更多的氧化物电荷和界面态,这些现象均说明氢气加剧双极晶体管的电离辐射损伤。
文摘An important problem of defect charging in electron-hole plasma in a semiconductor electronic device is investigated using the analogy of dust charging in dusty plasmas. This investigation yielded physical picture of the problem along with the mathematical model. Charging and discharging mechanism of charge carrier traps in a semiconductor elec-tronic device is also given. Potential applications of the study in semiconductor device technology are discussed. It would be interesting to find out how dust acoustic waves in electron-hole plasma in micro and nanoelectronic devices can be useful in finding out charge carrier trap properties of impurities or defects which serve as dust particles in elec-tron-hole (e-h) plasma. A new method based on an established technique “deep level transient spectroscopy” (DLTS) is described here suggesting the determination of properties of charge carrier traps in present and future semiconductor devices by measuring the frequency of dust acoustic waves (DAW). Relationship between frequency of DAW and properties of traps is described mathematically proposing the basis of a technique, called here, dust mode frequency deep level transient spectroscopy (DMF-DLTS).