为快速、准确地在遥感图像上提取各种农作物类型信息,满足国家农情遥感监测系统的要求,以2002年北京地区主要秋季作物提取为例,利用T erra/M OD IS数据,采用波谱分析的方法,建立一种基于遥感影像全覆盖的秋季作物类型自动提取方法,实现...为快速、准确地在遥感图像上提取各种农作物类型信息,满足国家农情遥感监测系统的要求,以2002年北京地区主要秋季作物提取为例,利用T erra/M OD IS数据,采用波谱分析的方法,建立一种基于遥感影像全覆盖的秋季作物类型自动提取方法,实现主要秋季作物遥感自动识别。首先根据研究区秋季作物的波谱特性和生物学特性,选取了红波段、蓝波段、近红外波段和中短波红外波段作为秋季作物类型提取的工作波段;同时,还利用由这4个波段构建的陆表水分指数和增强型指标指数作为遥感特征参量。其次根据研究区农作物物候历特征,提取了2002年4月到9月共7个时相的M OD IS数据。最后,采用分层决策树方法提取研究区主要秋季作物类型,并进行面积统计。为了验证其精度,与国家农业部农业统计数据进行比较,结果其精度达到86%以上。这表明,仅利用M OD IS自身光谱信息,即可较为准确地提取秋季作物类型信息,精度基本能满足了大尺度农情遥感监测的要求,可以为农业决策部门提供信息服务。展开更多
我国专利数据来源众多、指标关系复杂,针对现有专利价值评估过程依赖人为主观判断,缺乏客观、合理评估方法等问题,提出了一种基于分类回归树(classification and regression tree,CART)模型的属性选择方法,用于构建专利价值评估的指标体...我国专利数据来源众多、指标关系复杂,针对现有专利价值评估过程依赖人为主观判断,缺乏客观、合理评估方法等问题,提出了一种基于分类回归树(classification and regression tree,CART)模型的属性选择方法,用于构建专利价值评估的指标体系.实验结果表明相较于基于随机森林的属性选择方法,该方法不仅能有效地降低指标体系的规模,并且能提高评估建模的效率,在兼顾评估模型可解释性的基础上更好地提高专利价值评估的准确性.进一步通过枚举遍历的方法,约减指标集大小,构建出规模更小的指标体系,结合专家知识和实证研究,有效地验证了该指标体系的可解释性和现实意义.展开更多
文摘为快速、准确地在遥感图像上提取各种农作物类型信息,满足国家农情遥感监测系统的要求,以2002年北京地区主要秋季作物提取为例,利用T erra/M OD IS数据,采用波谱分析的方法,建立一种基于遥感影像全覆盖的秋季作物类型自动提取方法,实现主要秋季作物遥感自动识别。首先根据研究区秋季作物的波谱特性和生物学特性,选取了红波段、蓝波段、近红外波段和中短波红外波段作为秋季作物类型提取的工作波段;同时,还利用由这4个波段构建的陆表水分指数和增强型指标指数作为遥感特征参量。其次根据研究区农作物物候历特征,提取了2002年4月到9月共7个时相的M OD IS数据。最后,采用分层决策树方法提取研究区主要秋季作物类型,并进行面积统计。为了验证其精度,与国家农业部农业统计数据进行比较,结果其精度达到86%以上。这表明,仅利用M OD IS自身光谱信息,即可较为准确地提取秋季作物类型信息,精度基本能满足了大尺度农情遥感监测的要求,可以为农业决策部门提供信息服务。
文摘我国专利数据来源众多、指标关系复杂,针对现有专利价值评估过程依赖人为主观判断,缺乏客观、合理评估方法等问题,提出了一种基于分类回归树(classification and regression tree,CART)模型的属性选择方法,用于构建专利价值评估的指标体系.实验结果表明相较于基于随机森林的属性选择方法,该方法不仅能有效地降低指标体系的规模,并且能提高评估建模的效率,在兼顾评估模型可解释性的基础上更好地提高专利价值评估的准确性.进一步通过枚举遍历的方法,约减指标集大小,构建出规模更小的指标体系,结合专家知识和实证研究,有效地验证了该指标体系的可解释性和现实意义.