期刊文献+

决策树算法在学生成绩预测分析中的应用 被引量:16

Decision tree algorithm use to forecast and analyse for students' marks
下载PDF
导出
摘要 在教学管理工作中,学生成绩是评估教学质量的重要依据,多种因素可能对学生成绩造成影响。利用数据挖掘工具,对学生的学习成绩进行预测分析,利用预测分析结果,及时指正学生出现的不良学习行为,检查老师的教学效果。应用决策树C4.5算法建立学生成绩预测分析模型及分类规则,找出影响学生成绩的因素,有效的辅助教学管理工作。 In teaching management,students'marks is important gist of evaluate to teaching quality. Many factor affects possibly students'marks. Students'marks was forecasted and analysed with data mining tool. The result of forecast and analyse was use to point out badness learning habit of students,and check teaching effect. Decision tree (C4.5) algorithm was use to establish the forecasting & analyzing model and sorting rule for students' marks,and effectively assist teaching management.
作者 武彤 王秀坤
出处 《微计算机信息》 2010年第3期209-211,共3页 Control & Automation
关键词 数据挖掘 决策树算法 学生成绩 预测分析 data mining decision tree algorithm students’marks forecast analysis
  • 相关文献

参考文献5

二级参考文献9

  • 1李恒杰,李明.基于本体的Web分类技术研究[J].微计算机信息,2006,22(07X):215-217. 被引量:10
  • 2刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000.. 被引量:1
  • 3[1]HongLan Jin,Kam-Fai Wong.A Chinese Dictionary Construction Algorithm for Information Retrieval.ACM Transactions on Asian Language Information Processing,2002,1(4):281-296 被引量:1
  • 4[2]Yang Yiming,Pederson J O.A Comparative Study on Feature Selection in Text Categorization[C].Proceedings of the 14th International Conference on Machine learning.Nashville:Morgan Kaufmann,1997:412-420. 被引量:1
  • 5[3]Mlademnic,D.,Grobelnik,M.Feature Selection for unbalanced class distribution and Native Bayees[C].Proceedings of the Sisteenth International Conference on Machine Learning.Bled:Morgan Kaufmann,1999:258-267. 被引量:1
  • 6[4]S.K.Pal,V.Talwar,Web mining in soft computing framework:relevance,state of the art and future directions,IEEE Transactions on Neural Networks 13 (5) (2002) 1163-1177. 被引量:1
  • 7[5]Gruber TR.A Translation Approach to Portable Ontology Specifications[J].Knowledge Acquisition,1993,5:199~220. 被引量:1
  • 8[6]Belur V D.Nearest Neighbor (NN) Norms' pattern Classification Techniques[J].IEEE Computer Society Press,New York:IEEE press,1991.59. 被引量:1
  • 9[7]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features[J].Machine Learning,1998,11398:137-142. 被引量:1

共引文献169

同被引文献89

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部