期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cyberspace Security Using Adversarial Learning and Conformal Prediction
1
作者 Harry Wechsler 《Intelligent Information Management》 2015年第4期195-222,共28页
This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactic... This paper advances new directions for cyber security using adversarial learning and conformal prediction in order to enhance network and computing services defenses against adaptive, malicious, persistent, and tactical offensive threats. Conformal prediction is the principled and unified adaptive and learning framework used to design, develop, and deploy a multi-faceted?self-managing defensive shield to detect, disrupt, and deny intrusive attacks, hostile and malicious behavior, and subterfuge. Conformal prediction leverages apparent relationships between immunity and intrusion detection using non-conformity measures characteristic of affinity, a typicality, and surprise, to recognize patterns and messages as friend or foe and to respond to them accordingly. The solutions proffered throughout are built around active learning, meta-reasoning, randomness, distributed semantics and stratification, and most important and above all around adaptive Oracles. The motivation for using conformal prediction and its immediate off-spring, those of semi-supervised learning and transduction, comes from them first and foremost supporting discriminative and non-parametric methods characteristic of principled demarcation using cohorts and sensitivity analysis to hedge on the prediction outcomes including negative selection, on one side, and providing credibility and confidence indices that assist meta-reasoning and information fusion. 展开更多
关键词 Active LEARNING Adversarial LEARNING Anomaly detection Change detection CONFORMAL PREDICTION Cyber security data Mining DENIAL and Deception Human Factors INSIDER Threats Intrusion detection Meta-Reasoning Moving Target Defense Performance evaluation Randomness Semi-Supervised LEARNING Sequence Analysis Statistical LEARNING Transduction
下载PDF
智能网联汽车数据安全检测研究现状 被引量:1
2
作者 葛欣 董建阔 +1 位作者 陈滏媛 董振江 《现代交通与冶金材料》 CAS 2023年第3期30-42,共13页
智能化、网联化、电动化和共享化已成为汽车发展的主流趋势,然而,随着车联网商用规模的不断扩大,车联网产生的数据也呈指数级增加,车联网数据安全日益成为行业关注的焦点。数据是车联网运行的关键,如果缺乏有效的安全防范和监管措施,不... 智能化、网联化、电动化和共享化已成为汽车发展的主流趋势,然而,随着车联网商用规模的不断扩大,车联网产生的数据也呈指数级增加,车联网数据安全日益成为行业关注的焦点。数据是车联网运行的关键,如果缺乏有效的安全防范和监管措施,不仅会对车辆使用者的个人信息和隐私保护构成明显威胁,而且可能因车辆遭受远程控制等恶意攻击,造成重大的公共安全隐患。因此,从政府战略和行业发展角度出发,研究智能网联汽车数据安全检测技术,对智能车联网的数据安全进行检测评估、建设交通强国、为智能网联汽车产业的发展保驾护航,都具有重大战略意义。 展开更多
关键词 智能网联 车联网数据 数据安全检测评估 车联网发展
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部