期刊文献+

智能网联汽车数据安全检测研究现状

Survey on intelligent connected vehicle data security detection
下载PDF
导出
摘要 智能化、网联化、电动化和共享化已成为汽车发展的主流趋势,然而,随着车联网商用规模的不断扩大,车联网产生的数据也呈指数级增加,车联网数据安全日益成为行业关注的焦点。数据是车联网运行的关键,如果缺乏有效的安全防范和监管措施,不仅会对车辆使用者的个人信息和隐私保护构成明显威胁,而且可能因车辆遭受远程控制等恶意攻击,造成重大的公共安全隐患。因此,从政府战略和行业发展角度出发,研究智能网联汽车数据安全检测技术,对智能车联网的数据安全进行检测评估、建设交通强国、为智能网联汽车产业的发展保驾护航,都具有重大战略意义。 Intelligence,networking,electrification and sharing have become the mainstream trend of automotive development.However,with the continuous expansion of the commercial scale of the Internet of Vehicles,the data generated by the internet of vehicles have also increased exponentially.The data security of the internet of vehicles has increasingly become the focus of the industry.Data are the key to the operation of the internet of vehicles.If there is no effective security precautions and supervision measures,they will not only pose an obvious threat to the personal information and privacy protection of vehicle users,but also may cause major public safety risks due to malicious attacks such as remote control of the vehicle.Therefore,from the perspective of government strategy and industry development,it is of great strategic significance to study the data security detection technology of intelligent networked vehicles,detect and evaluate the data security of intelligent internet of vehicles,build a transportation power,and escort the development of the intelligent networked vehicle industry.
作者 葛欣 董建阔 陈滏媛 董振江 GE Xin;DONG Jiankuo;CHEN Fuyuan;DONG Zhenjiang(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210046,China)
出处 《现代交通与冶金材料》 CAS 2023年第3期30-42,共13页 Modern Transportation and Metallurgical Materials
关键词 智能网联 车联网数据 数据安全检测评估 车联网发展 intelligent internet connection car networking data data security detection and evaluation development of internet of vehicles
  • 相关文献

参考文献22

二级参考文献102

  • 1陈国润,母美荣,张蕊,孙丹,钱栋军.基于联邦学习的通信诈骗识别模型的实现[J].电信科学,2020,36(S01):300-306. 被引量:4
  • 2[OL].<http://hadoop.apache.org.>. 被引量:3
  • 3WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf. 被引量:1
  • 4TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx. 被引量:1
  • 5Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74. 被引量:1
  • 6Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html. 被引量:1
  • 7Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150. 被引量:1
  • 8DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237. 被引量:1
  • 9Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219. 被引量:1
  • 10Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7. 被引量:1

共引文献755

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部