为了识别当前通信系统所采用的主要调制方式,该文结合高阶累积量和循环谱的特点,采用混合识别算法,同时应用智能决策算法(神经网络)对信号进行识别。该算法基于四阶和六阶高阶累积量构造出一个新的特征参数,将数字调制信号分为{BPSK,2AS...为了识别当前通信系统所采用的主要调制方式,该文结合高阶累积量和循环谱的特点,采用混合识别算法,同时应用智能决策算法(神经网络)对信号进行识别。该算法基于四阶和六阶高阶累积量构造出一个新的特征参数,将数字调制信号分为{BPSK,2ASK},{QPSK},{2FSK,4FSK},{MSK}和{16QAM,64QAM}5类。然后利用高阶累积量的其它特征参数以及循环谱特征对{OFDM},{16QAM,64QAM},{2ASK,BPSK}及{2FSK,4FSK}进行识别。为便于工程实现,该文采用半实物仿真以及Lab VIEW和MATLAB混合编程来验证算法。仿真结果证明,该算法能够在较低信噪比下实现对{OFDM,BPSK,QPSK,2ASK,2FSK,4FSK,MSK,16QAM,64QAM}等多种信号的分类,在信噪比高于5 d B时,调制方式识别率可达94%以上,由此证明了该方法的有效性。展开更多
为完全识别当前卫星通信采用的主要调制方式,结合循环谱和高阶累积量两种信号调制识别方法的特点,提出了一种联合识别算法。该算法将循环谱特征加入到高阶累积量识别法中,联合多种特征参数判决构建识别器,首先利用循环谱完成ASK、FSK、...为完全识别当前卫星通信采用的主要调制方式,结合循环谱和高阶累积量两种信号调制识别方法的特点,提出了一种联合识别算法。该算法将循环谱特征加入到高阶累积量识别法中,联合多种特征参数判决构建识别器,首先利用循环谱完成ASK、FSK、PSK信号的类间识别以及FSK信号的类内识别,在此基础上利用高阶累积量方法完成FSK、PSK信号的类内识别。仿真结果表明,该算法能够完全区分卫星通信中主要的调制模式{ASK、2ASK、2FSK、4FSK、BPSK、QPSK},在信噪比高于5 d B时识别率达88%以上。展开更多
文摘为了识别当前通信系统所采用的主要调制方式,该文结合高阶累积量和循环谱的特点,采用混合识别算法,同时应用智能决策算法(神经网络)对信号进行识别。该算法基于四阶和六阶高阶累积量构造出一个新的特征参数,将数字调制信号分为{BPSK,2ASK},{QPSK},{2FSK,4FSK},{MSK}和{16QAM,64QAM}5类。然后利用高阶累积量的其它特征参数以及循环谱特征对{OFDM},{16QAM,64QAM},{2ASK,BPSK}及{2FSK,4FSK}进行识别。为便于工程实现,该文采用半实物仿真以及Lab VIEW和MATLAB混合编程来验证算法。仿真结果证明,该算法能够在较低信噪比下实现对{OFDM,BPSK,QPSK,2ASK,2FSK,4FSK,MSK,16QAM,64QAM}等多种信号的分类,在信噪比高于5 d B时,调制方式识别率可达94%以上,由此证明了该方法的有效性。
文摘为完全识别当前卫星通信采用的主要调制方式,结合循环谱和高阶累积量两种信号调制识别方法的特点,提出了一种联合识别算法。该算法将循环谱特征加入到高阶累积量识别法中,联合多种特征参数判决构建识别器,首先利用循环谱完成ASK、FSK、PSK信号的类间识别以及FSK信号的类内识别,在此基础上利用高阶累积量方法完成FSK、PSK信号的类内识别。仿真结果表明,该算法能够完全区分卫星通信中主要的调制模式{ASK、2ASK、2FSK、4FSK、BPSK、QPSK},在信噪比高于5 d B时识别率达88%以上。