期刊文献+

一种基于循环谱切片的通信辐射源识别方法 被引量:10

Emitter Identification Method Based on Cyclic Spectrum Density Slice
下载PDF
导出
摘要 提出一种基于循环谱切片的通信辐射源个体识别方法。通过计算信号的循环谱密度矩阵,将循环谱密度切片作为初始高维特征,再采用主成分分析方法对其进行降维处理得到指纹特征矢量,最后采取概率神经网络分类器实现辐射源的个体识别。通过对20部手持机的实验表明,使用该方法提取的特征矢量能够较好地反映信号的循环平稳特性,并且特征参数对噪声干扰不敏感,在较低信噪比条件下,系统仍具有较高的正确识别率,说明该方法确实能够较好地解决同型号、同批次、同工作参数通信辐射源的个体识别问题。 A method based on cyclic spectrum density slice for emitter identification is presen- ted. The signal cyclic spectrum density matrix is calculated and its slice is used as the initial high-dimension feature. Then the principal component analysis method is used to descend the dimension and obtain the fingerprint feature vector. Finally, the emitter identification is real- ized by using the neural network classifier. The experimental results based on 20 interphones show that the feature vector extracted by the method can reflect the signal cyclostation charac- teristic and the feature parameter is insensitive to noise and interference. Under the condition of low signal-to-noise ratio (SNR), the system still has a high correct recognition rate. It shows that the method can deal with the individual identification of emitters with same model and same batch.
出处 《数据采集与处理》 CSCD 北大核心 2013年第3期284-288,共5页 Journal of Data Acquisition and Processing
基金 江苏省自然科学基金(BK2009059)资助项目
关键词 辐射源识别 循环谱 主成分分析 指纹特征 emitter identification cyclic spectrum principal component analysis fingerprint feature
  • 相关文献

参考文献7

二级参考文献19

  • 1RenChunhui,WeiPing,LouZhiyou,XiaoXianci.INDIVIDUAL COMMUNICATION TRANSMITTER IDENTIFICATION BASED ON MULTIFRACTAL ANALYSIS[J].Journal of Electronics(China),2005,22(4):409-415. 被引量:6
  • 2马君国,肖怀铁,李保国,朱江.基于局部围线积分双谱的空间目标识别算法[J].系统工程与电子技术,2005,27(8):1490-1493. 被引量:19
  • 3董晖,姜秋喜.基于多脉冲的雷达个体识别技术[J].电子对抗,2006(6):12-18. 被引量:8
  • 4Toonstra J, Kinsner W. A radio transmitter finger printing system ODO-1[C]// Proceedings of Canadian Conference on Electrical and Computer Engineering.Calgary: IEEE, 1996: 60-63. 被引量:1
  • 5Ellis K, Serinken N. Characteristics of radio transmitter fingerprints[J]. Radio Science, 2001, 36: 585-597. 被引量:1
  • 6Hall J, Barbeau M, Kranakis E. Detection of transient in radio frequency fingerprinting using phase characteristics of signals[C] // Proceedings of the 3rd Conference on Wireless and Optical Communications. Alberta: ACTA Press, 2003:13 -18. 被引量:1
  • 7Hall J, Barbeau M, Kranakis E. Enhancing intrusion detection in wireless networks using radio frequency fingerprinting[C]// Proceedings of Communications, Internet, and Information Technology. St Thomas: ACTA Press, 2004:1 -6. 被引量:1
  • 8Zhang Xianda, Shi Yu, Bao Zheng. A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Trans on S P, 2001, 49(9) : 1 875-1 885. 被引量:1
  • 9Chandran V, Elgar S L. Pattern recognition using invariants defined from higher order spectra-one-dimensionalinputs[J]. IEEETrans on SP, 1993, 41(1): 205 212. 被引量:1
  • 10Tugnait J K. Detection of non-Gaussian signals using integrated polyspectrum[J].IEEE Trans on S P, 1994, 42(12): 3 137-3 149. 被引量:1

共引文献50

同被引文献79

引证文献10

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部