This article presents a mathematical model of helical end-milling forces through experimental identification of the cutting coefficients and analyzes the changes of comer-milling forces under different conditions. In ...This article presents a mathematical model of helical end-milling forces through experimental identification of the cutting coefficients and analyzes the changes of comer-milling forces under different conditions. In allusion to the corner-milling process, the relationship between working parameters and the comer coordinates is investigated by way of combination of tool tracing and cutting geometrodynamics. The milling parameters are optimized by changing the coordinates of tool center and working parameters without altering curing forces. By applying the optimized parameters to milling practice, a comparison is made to show the improved product quality. Based on these optimized parameters, a finite element method (FEM) program is used to compute deformation values of a workpiece's comer, which evidences few effects that optimized parameters can exert on the comer deformation.展开更多
The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part ...The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle.展开更多
基金National Defense Basic Research Program (D0620060433)
文摘This article presents a mathematical model of helical end-milling forces through experimental identification of the cutting coefficients and analyzes the changes of comer-milling forces under different conditions. In allusion to the corner-milling process, the relationship between working parameters and the comer coordinates is investigated by way of combination of tool tracing and cutting geometrodynamics. The milling parameters are optimized by changing the coordinates of tool center and working parameters without altering curing forces. By applying the optimized parameters to milling practice, a comparison is made to show the improved product quality. Based on these optimized parameters, a finite element method (FEM) program is used to compute deformation values of a workpiece's comer, which evidences few effects that optimized parameters can exert on the comer deformation.
文摘The success of a tunnel-boring machine (TBM) in a given project depends on the functionality of all components of the system, from the cutters to the backup system, and on the entire rolling stock. However, no part of the machine plays a more crucial role in the efficient operation of the machine than its cutterhead. The design of the cutterhead impacts the efficiency of cutting, the balance of the head, the life of the cutters, the maintenance of the main bearing/gearbox, and the effectiveness of the mucking along with its effects on the wear of the face and gage cutters/muck buckets. Overall, cutterhead design heavily impacts the rate of penetration (ROP), rate of machine utilization (U), and daffy advance rate (AR). Although there has been some discussion in commonly available publications regarding disk cutters, cutting forces, and some design features of the head, there is limited literature on this subject because the design of cutter- heads is mainly handled by machine manufacturers. Most of the design process involves proprietary algorithms by the manufacturers, and despite recent attention on the subject, the design of rock TBMs has been somewhat of a mystery to most end-users. This paper is an attempt to demystify the basic concepts in design. Although it may not be sufficient for a full-fledged design by the readers, this paper allows engineers and contractors to understand the thought process in the design steps, what to Look for in a proper design, and the implications of the head design on machine operation and life cycle.