期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
多分类问题代价敏感AdaBoost算法 被引量:32
1
作者 付忠良 《自动化学报》 EI CSCD 北大核心 2011年第8期973-983,共11页
针对目前多分类代价敏感分类问题在转换成二分类代价敏感分类问题存在的代价合并问题,研究并构造出了可直接应用于多分类问题的代价敏感AdaBoost算法.算法具有与连续AdaBoost算法类似的流程和误差估计.当代价完全相等时,该算法就变成了... 针对目前多分类代价敏感分类问题在转换成二分类代价敏感分类问题存在的代价合并问题,研究并构造出了可直接应用于多分类问题的代价敏感AdaBoost算法.算法具有与连续AdaBoost算法类似的流程和误差估计.当代价完全相等时,该算法就变成了一种新的多分类的连续AdaBoost算法,算法能够确保训练错误率随着训练的分类器的个数增加而降低,但不直接要求各个分类器相互独立条件,或者说独立性条件可以通过算法规则来保证,但现有多分类连续AdaBoost算法的推导必须要求各个分类器相互独立.实验数据表明,算法可以真正实现分类结果偏向错分代价较小的类,特别当每一类被错分成其他类的代价不平衡但平均代价相等时,目前已有的多分类代价敏感学习算法会失效,但新方法仍然能实现最小的错分代价.研究方法为进一步研究集成学习算法提供了一种新的思路,得到了一种易操作并近似满足分类错误率最小的多标签分类问题的AdaBoost算法. 展开更多
关键词 代价敏感学习 多分类问题 多标签分类问题 连续ADABOOST 代价敏感分类
下载PDF
代价敏感学习方法综述 被引量:31
2
作者 万建武 杨明 《软件学报》 EI CSCD 北大核心 2020年第1期113-136,共24页
分类是机器学习的重要任务之一.传统的分类学习算法追求最低的分类错误率,假设不同类型的错误分类具有相等的损失.然而,在诸如人脸识别门禁系统、软件缺陷预测、多标记学习等应用领域中,不同类型的错误分类所导致的损失差异较大.这要求... 分类是机器学习的重要任务之一.传统的分类学习算法追求最低的分类错误率,假设不同类型的错误分类具有相等的损失.然而,在诸如人脸识别门禁系统、软件缺陷预测、多标记学习等应用领域中,不同类型的错误分类所导致的损失差异较大.这要求学习算法对可能导致高错分损失的样本加以重点关注,使得学习模型的整体错分损失最小.为解决该问题,代价敏感学习方法引起了研究者的极大关注.以代价敏感学习方法的理论基础作为切入点,系统阐述了代价敏感学习的主要模型方法以及代表性的应用领域.最后,讨论并展望了未来可能的研究趋势. 展开更多
关键词 代价敏感 损失 分类 人脸识别 软件缺陷预测 多标记学习
下载PDF
多标签代价敏感分类集成学习算法 被引量:23
3
作者 付忠良 《自动化学报》 EI CSCD 北大核心 2014年第6期1075-1085,共11页
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集... 尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法. 展开更多
关键词 多标签分类 代价敏感学习 集成学习 自适应提升算法 多分类
下载PDF
基于代价敏感的朴素贝叶斯不平衡数据分类研究 被引量:21
4
作者 蒋盛益 谢照青 余雯 《计算机研究与发展》 EI CSCD 北大核心 2011年第S1期387-390,共4页
传统数据挖掘分类算法在不平衡数据集上分类效果不佳,可以将代价敏感思想与传统分类算法相结合解决不平衡数据分类问题.但在代价敏感学习中,代价的确定需要足够的先验知识,难以把握.针对上述不足,构造针对不平衡数据分布的自适应代价函... 传统数据挖掘分类算法在不平衡数据集上分类效果不佳,可以将代价敏感思想与传统分类算法相结合解决不平衡数据分类问题.但在代价敏感学习中,代价的确定需要足够的先验知识,难以把握.针对上述不足,构造针对不平衡数据分布的自适应代价函数,引进全局代价矩阵,对传统的朴素贝叶斯分类算法进行改进.在UCI数据集上的实验结果表明,提出的基于代价敏感的朴素贝叶斯分类算法对于不平衡数据分类是有效可行的. 展开更多
关键词 代价敏感 朴素贝叶斯 不平衡数据分类
下载PDF
代价敏感概率神经网络及其在故障诊断中的应用 被引量:17
5
作者 唐明珠 阳春华 +1 位作者 桂卫华 谢永芳 《控制与决策》 EI CSCD 北大核心 2010年第7期1074-1078,共5页
针对传统的分类算法大多以误分率最小化为目标,忽略了误分类型之间的差别和数据集的非平衡性的问题,提出代价敏感概率神经网络算法.该算法将代价敏感机制引入概率神经网络,用期望代价取代误分率,以期望代价最小化为目标,基于期望代价最... 针对传统的分类算法大多以误分率最小化为目标,忽略了误分类型之间的差别和数据集的非平衡性的问题,提出代价敏感概率神经网络算法.该算法将代价敏感机制引入概率神经网络,用期望代价取代误分率,以期望代价最小化为目标,基于期望代价最小的贝叶斯决策规则预测新样本类别.采用工业现场数据和数据集German Credit验证了该算法的有效性.实验结果表明,该算法具有故障识别率高、泛化能力强、建模时间短等特点. 展开更多
关键词 代价敏感学习 概率神经网络 分类 代价敏感概率神经网络
原文传递
不平衡多分类问题的连续AdaBoost算法研究 被引量:17
6
作者 付忠良 《计算机研究与发展》 EI CSCD 北大核心 2011年第12期2326-2333,共8页
现有AdaBoost系列算法一般没有考虑类的先验分布.针对该问题,基于最小化训练错误率,通过把符号函数表示的训练错误率的极值问题转变成一种指数函数的极值问题,提出了不平衡分类问题连续AdaBoost算法,给出了该算法的近似误差估计.基于同... 现有AdaBoost系列算法一般没有考虑类的先验分布.针对该问题,基于最小化训练错误率,通过把符号函数表示的训练错误率的极值问题转变成一种指数函数的极值问题,提出了不平衡分类问题连续AdaBoost算法,给出了该算法的近似误差估计.基于同样的方法,对二分类问题连续AdaBoost算法的合理性给出了一种全新的解释和证明,并推广到多分类问题,得到了多分类问题连续AdaBoost算法,其具有与二分类连续AdaBoost算法完全类似的算法流程.经分析该算法与Bayes统计推断方法等价,并且其训练错误率随着训练的分类器个数增加而减小.理论分析和基于UCI数据集的实验结果表明了不平衡多分类算法的有效性.在连续AdaBoost算法中,不平衡分类问题常被转换成平衡分类问题来处理,但当先验分布极度不平衡时,使用提出的不平衡分类问题连续AdaBoost算法比一般连续AdaBoost算法有更好效果. 展开更多
关键词 不平衡分类 连续ADABOOST 代价敏感学习 多分类 先验分布
下载PDF
序贯三支决策的代价敏感分类方法 被引量:16
7
作者 方宇 闵帆 +1 位作者 刘忠慧 杨新 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期148-156,共9页
序贯三支决策体现了信息粒化和代价敏感学习的优势,其中信息粒化是人类认知和决策执行的基础,代价则是信息处理涉及的重要因素.提出针对代价敏感学习的序贯三支决策模型.首先,对信息粒化和决策代价之间的关系进行了定义和描述;然后,从... 序贯三支决策体现了信息粒化和代价敏感学习的优势,其中信息粒化是人类认知和决策执行的基础,代价则是信息处理涉及的重要因素.提出针对代价敏感学习的序贯三支决策模型.首先,对信息粒化和决策代价之间的关系进行了定义和描述;然后,从序决策过程的视角,利用不同粒度层次的代价矩阵构建了代价函数;最后,为平衡决策结果代价和决策过程代价,提出了两个优化问题,并从理论上阐述了其意义,从实验结果分析上验证了算法的有效性,体现了序贯三支决策在代价敏感分类问题上的优势. 展开更多
关键词 三支决策 代价敏感学习 粒计算 分类
下载PDF
代价敏感分类的软件缺陷预测方法 被引量:15
8
作者 李勇 黄志球 +1 位作者 房丙午 王勇 《计算机科学与探索》 CSCD 2014年第12期1442-1451,共10页
软件缺陷预测是提高软件测试效率,保证软件可靠性的重要途径。考虑到软件缺陷预测模型对软件模块错误分类代价的不同,提出了代价敏感分类的软件缺陷预测模型构建方法。针对代码属性度量数据,采用Bagging方式有放回地多次随机抽取训练样... 软件缺陷预测是提高软件测试效率,保证软件可靠性的重要途径。考虑到软件缺陷预测模型对软件模块错误分类代价的不同,提出了代价敏感分类的软件缺陷预测模型构建方法。针对代码属性度量数据,采用Bagging方式有放回地多次随机抽取训练样本来构建代价敏感分类的决策树基分类器,然后通过投票的方式集成后进行软件模块的缺陷预测,并给出模型构建过程中代价因子最优值的判定选择方法。使用公开的NASA软件缺陷预测数据集进行仿真实验,结果表明该方法在保证缺陷预测率的前提下,误报率明显降低,综合评价指标AUC和F值均优于现有方法。 展开更多
关键词 软件缺陷预测 代价敏感分类 最优代价因子 决策树 集成算法
下载PDF
代价敏感分类算法的实验比较 被引量:14
9
作者 闫明松 周志华 《模式识别与人工智能》 EI CSCD 北大核心 2005年第5期628-635,共8页
对8种不同代价敏感分类算法进行了比较研究。目的是通过实验手段,分析不同代价敏感算法的行为和当其归纳过程发生变化时,对错误分类的总代价、高代价错误数量和错误的总数量所产生的影响。对其中的Ada-Cost方法,本文分析了为何其代价调... 对8种不同代价敏感分类算法进行了比较研究。目的是通过实验手段,分析不同代价敏感算法的行为和当其归纳过程发生变化时,对错误分类的总代价、高代价错误数量和错误的总数量所产生的影响。对其中的Ada-Cost方法,本文分析了为何其代价调整因子可能对其性能带来负面影响,并实现了2种变体方法,提高了其性能。 展开更多
关键词 机器学习 代价敏感 决策树 分类 集成学习
原文传递
基于代价敏感激活函数XGBoost的不平衡数据分类方法 被引量:8
10
作者 李京泰 王晓丹 《计算机科学》 CSCD 北大核心 2022年第5期135-143,共9页
为解决在数据不平衡条件下使用XGBoost框架处理二分类问题时算法对少数类样本的识别能力下降的问题,提出了基于代价敏感激活函数的XGBoost算法(Cost-sensitive Activation Function XGBoost,CSAF-XGBoost)。在XGBoost框架构建决策树时,... 为解决在数据不平衡条件下使用XGBoost框架处理二分类问题时算法对少数类样本的识别能力下降的问题,提出了基于代价敏感激活函数的XGBoost算法(Cost-sensitive Activation Function XGBoost,CSAF-XGBoost)。在XGBoost框架构建决策树时,数据不平衡会影响分裂点的选择,导致少数类样本被误分。通过引入代价敏感激活函数改变样本在不同预测结果下损失函数的梯度变化,来解决被误分的少数类样本因梯度变化小而无法在XGBoost迭代过程中被有效分类的问题。通过实验分析了激活函数的参数与数据不平衡度的关系,并对CSAF-XGBoost算法与SMOTE-XGBoost,ADASYN-XGBoost,Focal loss-XGBoost,Weight-XGBoost优化算法在UCI公共数据集上的分类性能进行了对比。结果表明,在F1值和AUC值相同或有提高的情况下,CSAF-XGBoost算法对少数类样本的检出率比最优算法平均提高了6.75%,最多提高了15%,证明了CSAF-XGBoost算法对少数类样本有更高的识别能力,且具有广泛的适用性。 展开更多
关键词 代价敏感 LOGISTIC回归 数据不平衡分类 XGBoost 激活函数
下载PDF
嵌入代价敏感的极限学习机相异性集成的基因表达数据分类 被引量:7
11
作者 安春霖 陆慧娟 +1 位作者 魏莎莎 杨小兵 《计算机科学》 CSCD 北大核心 2014年第12期211-215,共5页
极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价... 极限学习机的相异性集成算法(Dissimilarity Based Ensemble of Extreme Learning Machine,D-ELM)在基因表达数据分类中能够得到较稳定的分类效果,然而这种分类算法是基于分类精度的,当所给样本的误分类代价不相等时,不能直接实现代价敏感分类过程中的最小平均误分类代价的要求。通过在分类过程中引入概率估计以及误分类代价和拒识代价重新构造分类结果,提出了基于相异性集成极限学习机的代价敏感算法(CS-D-ELM)。该算法被运用到基因表达数据集上,得到了较好的分类效果。 展开更多
关键词 极限学习机 相异性集成 代价敏感 基因表达数据 分类
下载PDF
改进的随机森林算法在乳腺肿瘤诊断中的应用 被引量:6
12
作者 王平 单文英 《计算机应用与软件》 CSCD 2016年第4期252-257,264,共7页
为了解决乳腺肿瘤诊断中误差代价敏感的不平衡分类问题,提出一种改进的随机森林算法的乳腺肿瘤诊断模型。首先,在随机森林算法的基础上,将良恶乳腺肿瘤样本的诊断性能分开考虑,利用随机森林的泛化误差上界相关因素推导出ROC曲线的查全率... 为了解决乳腺肿瘤诊断中误差代价敏感的不平衡分类问题,提出一种改进的随机森林算法的乳腺肿瘤诊断模型。首先,在随机森林算法的基础上,将良恶乳腺肿瘤样本的诊断性能分开考虑,利用随机森林的泛化误差上界相关因素推导出ROC曲线的查全率(TPR)和误警率(FPR)的上界值。给出针对特定类别优化分类性能的基准,绘制出不同决策阈值下的TPR和FPR值的ROC曲线,调整平均关联度,再次训练,依据ROC曲线性能,确定最优平均关联度的诊断模型。最后,将该改进的随机森林算法与传统方法的诊断性能进行对比。实验结果证明,提出的方法模型在保证整体的诊断性能的前提下,对于提高恶性肿瘤的识别能力具有可行性和有效性。 展开更多
关键词 乳腺肿瘤 诊断 代价敏感 不平衡分类 随机森林 ROC曲线
下载PDF
基于代价敏感正则化和EfficientNet的糖尿病视网膜病变分类方法 被引量:5
13
作者 王明智 马志强 +2 位作者 赵锋锋 王永杰 郭继峰 《液晶与显示》 CAS CSCD 北大核心 2022年第12期1626-1635,共10页
糖尿病视网膜病变(DR)是糖尿病的常见并发症,是目前世界范围内导致失明的主要疾病之一。临床的早期阶段很难检测到DR。本文提出一种基于卷积神经网络的计算机辅助诊断方法,根据眼底的图像自动分类DR的严重程度。采用多种预处理方法提高... 糖尿病视网膜病变(DR)是糖尿病的常见并发症,是目前世界范围内导致失明的主要疾病之一。临床的早期阶段很难检测到DR。本文提出一种基于卷积神经网络的计算机辅助诊断方法,根据眼底的图像自动分类DR的严重程度。采用多种预处理方法提高输入图像的质量,并且采用多种数据增强的方法来提高数据集的均衡性。使用代价敏感正则化扩展标准分类损失函数,根据预测等级和真实等级相差程度的不同,对其施加不同的惩罚。在ImageNet数据集上进行预训练,从而引入迁移学习,并且使用Softmax激活函数的全连接层使模型获得更好的性能。基于两个数据集的实验结果表明,相较于近期学者的研究结果,该模型能够实现二次加权kappa分数约5%的改善,AUC约3%的改善。将代价敏感正则化引入到EfficientNet网络模型可以提高糖尿病视网膜病变分类任务的准确率,能够得到很好的模型性能。 展开更多
关键词 糖尿病视网膜病变 深度学习 代价敏感正则化 卷积神经网络 图像分类
下载PDF
面向代价敏感的多标记不完备数据特征选择算法 被引量:5
14
作者 黄琴 钱文彬 +1 位作者 王映龙 吴兵龙 《小型微型计算机系统》 CSCD 北大核心 2018年第12期2617-2624,共8页
代价敏感下的特征选择是机器学习和数据挖掘领域的重要研究内容,目前基于代价敏感的特征选择研究主要是面向单标记的数据,由于在许多应用领域数据往往是多标记连续型数据,且在数据获取过程中由于技术或成本限制导致数据呈现出不完备性.... 代价敏感下的特征选择是机器学习和数据挖掘领域的重要研究内容,目前基于代价敏感的特征选择研究主要是面向单标记的数据,由于在许多应用领域数据往往是多标记连续型数据,且在数据获取过程中由于技术或成本限制导致数据呈现出不完备性.为解决上述问题,提出了一种基于测试代价的多标记不完备数据特征选择算法.首先,算法利用粗糙集模型计算多标记不完备数据下的邻域粒度,并用均匀分布和正态分布两种分布函数计算每个特征的特征代价;然后,提出了一种基于测试代价的特征重要性计算方法,并在核特征的基础上,设计了启发式的特征选择算法;最后,通过在Mulan数据集上的实验结果进一步验证了算法的有效性和可行性. 展开更多
关键词 代价敏感 特征选择 属性约简 不完备数据 多标记分类
下载PDF
基于分支限界的不平衡气象数据晴雨分析 被引量:4
15
作者 王剑辉 梁路 王彪 《计算机应用研究》 CSCD 北大核心 2016年第6期1648-1652,共5页
提出基于修改的代价敏感学习的方法对不平衡的天气数据进行预处理,结合天气数据自身的特点,以单位时间的降雨量为成本的值,将数据合理有效地区分为下雨和非下雨两类;进而运用基于逻辑的方法对处理完的数据进行分析,运用分支限界算法得... 提出基于修改的代价敏感学习的方法对不平衡的天气数据进行预处理,结合天气数据自身的特点,以单位时间的降雨量为成本的值,将数据合理有效地区分为下雨和非下雨两类;进而运用基于逻辑的方法对处理完的数据进行分析,运用分支限界算法得出布尔分类器。实验结果表明此方法可行有效,该方法可进一步对布尔分类器结果进行逻辑运算,从而达到更加灵活的操作分类器的效果。 展开更多
关键词 天气 不平衡 代价敏感 逻辑 分支限界 分类
下载PDF
基于代价敏感卷积神经网络的加密流量分类
16
作者 钟海龙 何月顺 +3 位作者 何璘琳 陈杰 田鸣 郑瑞银 《计算机与现代化》 2024年第5期55-60,共6页
针对加密流量分类中由于不平衡数据导致的分类偏差和少数类识别率低的问题,提出一种基于代价敏感卷积神经网络的加密流量分类方法。鉴于传统卷积神经网络在处理不平衡数据时容易偏向多数类,该方法引入动态权重调整策略,使其在每次迭代... 针对加密流量分类中由于不平衡数据导致的分类偏差和少数类识别率低的问题,提出一种基于代价敏感卷积神经网络的加密流量分类方法。鉴于传统卷积神经网络在处理不平衡数据时容易偏向多数类,该方法引入动态权重调整策略,使其在每次迭代中根据代价敏感层的反馈来重新评估并自适应调整每个样本的权重。当少数类样本被模型误分类时,其权重会增加,促使模型在后续训练中更加关注它们。随着训练的进行,这种动态权重调整策略持续驱使模型改进并提高对少数类样本的识别能力,从而有效地应对类别不平衡问题。为了避免过拟合,该方法还采纳早停策略,当验证集性能连续下滑时及时终止训练。实验结果表明,本文所提出的网络模型在处理类别不平衡的加密流量分类问题上具有显著的优势,准确率和F1值均达到0.97以上。本文研究为加密流量分类提供了一种更为有效且适应于类别不平衡问题的解决方案,为网络安全领域的研究与应用提供了有益的探索。 展开更多
关键词 卷积神经网络 代价敏感学习 加密流量分类 类不平衡 损失函数
下载PDF
代价敏感的KPCA-Stacking不均衡数据分类算法 被引量:4
17
作者 曹婷婷 张忠林 《计算机工程与科学》 CSCD 北大核心 2021年第3期525-533,共9页
代价敏感学习是解决不均衡数据分类问题的一个重要策略,数据特征的非线性也给分类带来一定困难,针对此问题,结合代价敏感学习思想与核主成分分析KPCA提出一种代价敏感的Stacking集成算法KPCA-Stacking。首先对原始数据集采用自适应综合... 代价敏感学习是解决不均衡数据分类问题的一个重要策略,数据特征的非线性也给分类带来一定困难,针对此问题,结合代价敏感学习思想与核主成分分析KPCA提出一种代价敏感的Stacking集成算法KPCA-Stacking。首先对原始数据集采用自适应综合采样方法(ADASYN)进行过采样并进行KPCA降维处理;其次将KNN、LDA、SVM、RF按照贝叶斯风险最小化原理转化为代价敏感算法作为Stacking集成学习框架的初级学习器,逻辑回归作为元学习器。在5个公共数据集上对比J48决策树等10种算法,结果表明代价敏感的KPCA-Stacking算法在少数类识别率上有一定提升,比单个模型的整体分类性能更优。 展开更多
关键词 不均衡数据 代价敏感 KPCA STACKING ADASYN过采样 分类
下载PDF
代价与样本相关的简约核支持向量机 被引量:3
18
作者 何海江 《计算机应用》 CSCD 北大核心 2008年第11期2863-2866,2880,共5页
针对机器学习领域中误分类代价与样本相关的情况,提出一种以最小化总代价为目标的样本相关代价敏感的简约核支持向量机sd2sSVM。首先,在GSVM框架下,将优化目标转换为无约束数学规划问题,再引入分段多项式平滑函数逼近正号函数,使用Newto... 针对机器学习领域中误分类代价与样本相关的情况,提出一种以最小化总代价为目标的样本相关代价敏感的简约核支持向量机sd2sSVM。首先,在GSVM框架下,将优化目标转换为无约束数学规划问题,再引入分段多项式平滑函数逼近正号函数,使用Newton-YUAN方法求无约束问题的唯一最优解,最后引入简约核提高解非线性问题的效率。实验结果表明,与传统的样本相关代价敏感支持向量机相比,sd2sSVM的分类精度、误分类代价相当,但训练时间、预测时间则更短。另外,讨论了参数C对sd2sSVM分类性能的影响。 展开更多
关键词 代价敏感 简约核 无约束 支持向量机 分类
下载PDF
加权边缘损失函数的代价敏感支持向量机 被引量:3
19
作者 陶卿 梁万路 +1 位作者 孔康 汪群山 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期763-768,共6页
已有的非平衡数据分类算法主要采取直接对损失函数进行加权的方法.文中提出一种加权边缘的hinge损失函数并证明它的贝叶斯一致性,得到加权边缘支持向量机算法(WMSVM),并给出类似于SMO的求解方法.实验结果表明WMSVM在一些数据库上是有效... 已有的非平衡数据分类算法主要采取直接对损失函数进行加权的方法.文中提出一种加权边缘的hinge损失函数并证明它的贝叶斯一致性,得到加权边缘支持向量机算法(WMSVM),并给出类似于SMO的求解方法.实验结果表明WMSVM在一些数据库上是有效的,从而从理论和实验上说明基于加权边缘的损失函数方法是已有代价敏感方法的一种较好补充. 展开更多
关键词 非平衡数据问题 代价敏感分类 加权边缘 支持向量机 贝叶斯一致性
原文传递
Cost-Sensitive学习的一个新课题 被引量:2
20
作者 周生明 廖元秀 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第4期55-58,共4页
Cost-Sensitive学习注重分类过程中的各种代价,特别是误分类代价和属性代价。在Cost-Sensitive学习中还有一种代价对分类的总代价有较大影响,这种代价可称为分类延时代价,即延误分类而造成的代价。包含分类延时代价的Cost-Sensitive学习... Cost-Sensitive学习注重分类过程中的各种代价,特别是误分类代价和属性代价。在Cost-Sensitive学习中还有一种代价对分类的总代价有较大影响,这种代价可称为分类延时代价,即延误分类而造成的代价。包含分类延时代价的Cost-Sensitive学习是Cost-Sensitive学习中一个新的课题,这个新课题的目标是使分类过程中的误分类代价、检查代价及分类延时代价之和达到最小。给出包含一种简单的分类延时代价的Cost-Sensitive学习,提出一个既"摊薄"延时代价又减少浪费检查代价的检查策略。 展开更多
关键词 costsensitive学习 分类延时代价 序列检查策略 批检查策略
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部