期刊文献+

加权边缘损失函数的代价敏感支持向量机 被引量:3

Cost-Sensitive SVM Based on Loss Functions with Weighted Margin
原文传递
导出
摘要 已有的非平衡数据分类算法主要采取直接对损失函数进行加权的方法.文中提出一种加权边缘的hinge损失函数并证明它的贝叶斯一致性,得到加权边缘支持向量机算法(WMSVM),并给出类似于SMO的求解方法.实验结果表明WMSVM在一些数据库上是有效的,从而从理论和实验上说明基于加权边缘的损失函数方法是已有代价敏感方法的一种较好补充. Almost all the available algorithms deal with the imbalanced problems by directly weighting the loss functions. In this paper, a loss by weighting the margin in hinge function is proposed and its Bayesian consistency is proved. Furthermore, a learning algorithm, called Weighting Margin SVM (WMSVM), is obtained and SMO can be modified to solve WMSVM. Experimental results on certain benchmark datasets demonstrate the effectiveness of WMSVM. Both of the theoretical and experimental analysis indicate that the proposed weighted margin loss function method enriches the cost-sensitive learning.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期763-768,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60835002 60975040)
关键词 非平衡数据问题 代价敏感分类 加权边缘 支持向量机 贝叶斯一致性 Imbalanced Data Problem, Cost-Sensitive Classification, Weighted Margin, SupportVector Machine, Bayesian Consistency
  • 相关文献

参考文献20

  • 1Japkowicz N, Stephen S. The Class Imbalance Problem: A System- atic Study. Intelligent Data Analysis, 2002, 6 (5) : 429 -450. 被引量:1
  • 2ChawIa N V, Japkowicz N, Kotcz A. Special Issue on Class Imbal- ances. SIGKDD Explorations, 2004, 6 ( 1 ) : 1 - 6. 被引量:1
  • 3Elkan C. The Foundations of Cost-Sensitive Learning//Proc of the 17th International Joint Conference on Artificial Intelligence. Seat- tle, USA, 2001, II: 973-978. 被引量:1
  • 4Sun Yanmin, Kamela M S, Wong A K C, et al. Cost-Sensitive Boosting for Classification of Imbalanced Data. Pattern Recognition, 2007, 40(12) : 3358 -3378. 被引量:1
  • 5Maloof M A. Learning When Data Sets Are Imbalanced and When Costs Are Unequal and Unknown//Proc of the Workshop on Learn- ing from Imbalanced Data Sets. Washington, USA, 2003:1263 - 1284. 被引量:1
  • 6Masnadi-Shirazi H, Vasconcelos N. Risk Minimization, Probability Elicitation, and Cost-Sensitive SVMs // Proc of the 27th Interna- tional Conference on Maehine Learning. Haifa, Israel, 2010:204 - 213. 被引量:1
  • 7Cristianini N, Schawe-Taylor J. An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press, 2000. 被引量:1
  • 8Zhang Tong. Statistical Behavior and Consistency of Classification Methods Based on Convex Risk Minimization. Annals of Statistics,2004, 32(1): 56-85. 被引量:1
  • 9Wang Jue, Tao Qing. Machine Learning: The State of the Art. IEEE Intelligent Systems, 2008, 23 ( 6 ) : 49 - 55. 被引量:1
  • 10Friedman J H, Hastie T, Tibshirani R. Additive Logistic Regres- sion: A Statistical View of Boosting. Annals of Statistics, 2000, 28 (2) : 337 -407. 被引量:1

同被引文献14

  • 1X. Y. Liu, Q. Q. Li, z. H. Zhou. Learning imbalanced multi - class data with optimal dichotomy weights [C]//Proceed- ings of the 13th IEEE International Conference on Data Min- ing, Dallas, TX,2013. 被引量:1
  • 2Y. Liu, A. An, X. Huang. Boosting prediction accuracy on imbalanced datasets with SVM ensembles [C]//Proceed- ings of the 10th Pacific - Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Berlin, Springer- Verlag, 2006. 被引量:1
  • 3S. K. Aggarwal, G. Arun, P. S. Vijay. Stage and discharge forecasting by SVM and ANN techniques [J]. Water Re- sources Management,2012,26 ( 13 ). 被引量:1
  • 4F. Vojtech, H. Vaclav. Multi - class support vector machine [C]//The 16th International Conference on Pattern Recog- nition ( ICPR2002 ), 2002. 被引量:1
  • 5U. Krebel. Pairwise classification and support vector ma- chines [M]. In: Advances in Kernel Methods Support Vector Learning. B. Scholkopf, C. J. C. Burges and A. J. Smola, Eds. Cambridge, MA : MIT Press, 1999. 被引量:1
  • 6J. C. Platt, N. Cristianini, J. Shawe - Taylor. Large margin DAG's for multiclass classification[M]. Advances in Neu- ral Information Processing Systems, Cambridge, MA : MIT Press, 2000. 被引量:1
  • 7叶志飞,文益民,吕宝粮.不平衡分类问题研究综述[J].智能系统学报,2009,4(2):148-156. 被引量:72
  • 8曾志强,吴群,廖备水,高济.一种基于核SMOTE的非平衡数据集分类方法[J].电子学报,2009,37(11):2489-2495. 被引量:48
  • 9郭虎升,亓慧,王文剑.处理非平衡数据的粒度SVM学习算法[J].计算机工程,2010,36(2):181-183. 被引量:15
  • 10钱洪波,贺广南.非平衡类数据分类概述[J].计算机工程与科学,2010,32(5):85-88. 被引量:17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部