This paper explores the planar arrangement feature of the copper interconnects in a view field of several millimeters by the focused ion-beam (FIB) Moire inversion method quantitatively. The curved FIB Moire pattern...This paper explores the planar arrangement feature of the copper interconnects in a view field of several millimeters by the focused ion-beam (FIB) Moire inversion method quantitatively. The curved FIB Moire patterns indicate that the copper interconnects are a series of curves with continuous variations instead of beelines. The control equation set of the copper interconnects central lines is attained through the Moire inversion method. This work can be extended to inspect the structural defects and provide a reliable support for the interconnects structure fabrication.展开更多
This work focuses on numerical modeling of hydrostatic stress, which is critical to the formation of stress-induced voiding (SIV) in copper damascene interconnects. Using three-dimensional finite element analysis, t...This work focuses on numerical modeling of hydrostatic stress, which is critical to the formation of stress-induced voiding (SIV) in copper damascene interconnects. Using three-dimensional finite element analysis, the distribution of hydrostatic stress is examined in copper interconnects and models are based on the samples, which are fabricated in industry. In addition, hydrostatic stress is studied through the influences of different low-k dielectrics, barrier layers and line widths of copper lines, and the results indicate that hydrostatic stress is strongly dependent on these factors. Hydrostatic stress is highly non-uniform throughout the copper structure and the highest tensile hydrostatic stress exists on the top interface of all the copper lines.展开更多
基金supported by the JSPS Postdoctoral Fellowship for Foreign Researchersthe National Basic Research Program of China ("973" Project) (2010CB631005,2011CB606105)+1 种基金the National Natural Science Foundation of China (11172151,90916010)Specialized Research Fund for the Doctoral Program of Higher Education(20090002110048)
文摘This paper explores the planar arrangement feature of the copper interconnects in a view field of several millimeters by the focused ion-beam (FIB) Moire inversion method quantitatively. The curved FIB Moire patterns indicate that the copper interconnects are a series of curves with continuous variations instead of beelines. The control equation set of the copper interconnects central lines is attained through the Moire inversion method. This work can be extended to inspect the structural defects and provide a reliable support for the interconnects structure fabrication.
基金Proiect supported by the National Natural Science Foundation of China(No.50871016).
文摘This work focuses on numerical modeling of hydrostatic stress, which is critical to the formation of stress-induced voiding (SIV) in copper damascene interconnects. Using three-dimensional finite element analysis, the distribution of hydrostatic stress is examined in copper interconnects and models are based on the samples, which are fabricated in industry. In addition, hydrostatic stress is studied through the influences of different low-k dielectrics, barrier layers and line widths of copper lines, and the results indicate that hydrostatic stress is strongly dependent on these factors. Hydrostatic stress is highly non-uniform throughout the copper structure and the highest tensile hydrostatic stress exists on the top interface of all the copper lines.