期刊文献+
共找到2,170篇文章
< 1 2 109 >
每页显示 20 50 100
卷积神经网络研究综述 被引量:551
1
作者 李彦冬 郝宗波 雷航 《计算机应用》 CSCD 北大核心 2016年第9期2508-2515,2565,共9页
近年来,卷积神经网络在图像分类、目标检测、图像语义分割等领域取得了一系列突破性的研究成果,其强大的特征学习与分类能力引起了广泛的关注,具有重要的分析与研究价值。首先回顾了卷积神经网络的发展历史,介绍了卷积神经网络的基本结... 近年来,卷积神经网络在图像分类、目标检测、图像语义分割等领域取得了一系列突破性的研究成果,其强大的特征学习与分类能力引起了广泛的关注,具有重要的分析与研究价值。首先回顾了卷积神经网络的发展历史,介绍了卷积神经网络的基本结构和运行原理,重点针对网络过拟合、网络结构、迁移学习、原理分析四个方面对卷积神经网络在近期的研究进行了归纳与分析,总结并讨论了基于卷积神经网络的相关应用领域取得的最新研究成果,最后指出了卷积神经网络目前存在的不足以及未来的发展方向。 展开更多
关键词 卷积神经网络 深度学习 特征表达 神经网络 迁移学习
下载PDF
基于CNN-LSTM混合神经网络模型的短期负荷预测方法 被引量:324
2
作者 陆继翔 张琪培 +3 位作者 杨志宏 涂孟夫 陆进军 彭晖 《电力系统自动化》 EI CSCD 北大核心 2019年第8期131-137,共7页
为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以... 为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以及峰谷电价数据按时间滑动窗口构造连续特征图作为输入,先采用CNN提取特征向量,将特征向量以时序序列方式构造并作为LSTM网络输入数据,再采用LSTM网络进行短期负荷预测。使用所提方法对江苏省某地区电力负荷数据进行预测实验,实验结果表明,文中所提出的预测方法比传统负荷预测方法、随机森林模型负荷预测模型方法和标准LSTM网络负荷预测方法具有更高的预测精度。 展开更多
关键词 短期负荷预测 卷积神经网络 长短期记忆网络 卷积神经网络—长短期记忆网络混合模型
下载PDF
基于深度学习的表面缺陷检测方法综述 被引量:163
3
作者 陶显 侯伟 徐德 《自动化学报》 EI CAS CSCD 北大核心 2021年第5期1017-1034,共18页
近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一... 近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.本文探讨了表面缺陷检测中三个关键问题,介绍了工业表面缺陷常用数据集.最后,对表面缺陷检测的未来发展趋势进行了展望. 展开更多
关键词 深度学习 表面缺陷检测 机器视觉 卷积神经网络
下载PDF
基于卷积神经网络的目标检测研究综述 被引量:147
4
作者 李旭冬 叶茂 李涛 《计算机应用研究》 CSCD 北大核心 2017年第10期2881-2886,2891,共7页
随着训练数据的增加以及机器性能的提高,基于卷积神经网络的目标检测冲破了传统目标检测的瓶颈,成为当前目标检测的主流算法。因此,研究如何有效地利用卷积神经网络进行目标检测具有重要价值。首先回顾了卷积神经网络如何解决传统目标... 随着训练数据的增加以及机器性能的提高,基于卷积神经网络的目标检测冲破了传统目标检测的瓶颈,成为当前目标检测的主流算法。因此,研究如何有效地利用卷积神经网络进行目标检测具有重要价值。首先回顾了卷积神经网络如何解决传统目标检测中存在的问题;介绍了卷积神经网络的基本结构,描述了当前卷积神经网络的研究进展及常用的卷积神经网络;重点分析和讨论了两种应用卷积神经网络进行目标检测的思路和方法,指出了目前存在的不足。最后总结了基于卷积神经网络的目标检测以及未来的发展方向。 展开更多
关键词 卷积神经网络 目标检测 深度学习
下载PDF
基于深度学习的YOLO目标检测综述 被引量:146
5
作者 邵延华 张铎 +2 位作者 楚红雨 张晓强 饶云波 《电子与信息学报》 EI CSCD 北大核心 2022年第10期3697-3708,共12页
目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对Y... 目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对YOLO系列算法及其重要改进、应用进行了详细调研。首先,系统地梳理了YOLO家族及重要改进,包含YOLOv1-v4,YOLOv5,Scaled-YOLOv4,YOLOR和最新的YOLOX。然后,对YOLO中重要的基础网络,损失函数进行了详细的分析和总结。其次,依据不同的改进思路或应用场景对YOLO算法进行了系统的分类归纳。例如,注意力机制、3D、航拍场景、边缘计算等。最后,总结了YOLO的特点,并结合最新的文献分析可能的改进思路和研究趋势。 展开更多
关键词 目标检测 YOLO 深度学习 卷积神经网络
下载PDF
卷积神经网络在图像分类和目标检测应用综述 被引量:132
6
作者 周俊宇 赵艳明 《计算机工程与应用》 CSCD 北大核心 2017年第13期34-41,共8页
卷积神经网络具有强大的特征学习能力,随着大数据时代的到来和计算机能力的提升,近年来卷积神经网络在图像识别、目标检测等领域取得了突破性进展,掀起了新的研究热潮。综述卷积神经网络的基本原理,以及其在图像分类、目标检测上的研究... 卷积神经网络具有强大的特征学习能力,随着大数据时代的到来和计算机能力的提升,近年来卷积神经网络在图像识别、目标检测等领域取得了突破性进展,掀起了新的研究热潮。综述卷积神经网络的基本原理,以及其在图像分类、目标检测上的研究进展和典型模型,最后分析了卷积神经网络目前的问题,并展望了未来的发展方向。 展开更多
关键词 卷积神经网络 图像分类 目标检测
下载PDF
基于深度学习卷积神经网络的地震波形自动分类与识别 被引量:90
7
作者 赵明 陈石 Dave Yuen 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2019年第1期374-382,共9页
发展高效、高精度、普适性强的自动波形拾取算法在地震大数据时代背景下显得越来越重要.波形自动拾取算法的主要挑战来自如何适应不同区域的不同类型地震事件的分类与筛选.本文针对地震事件-噪音分类这一问题,使用13839个汶川地震余震... 发展高效、高精度、普适性强的自动波形拾取算法在地震大数据时代背景下显得越来越重要.波形自动拾取算法的主要挑战来自如何适应不同区域的不同类型地震事件的分类与筛选.本文针对地震事件-噪音分类这一问题,使用13839个汶川地震余震事件建立数据集,应用深度学习卷积神经网络(CNN)方法进行训练,并用8900个新的汶川余震事件作为检测数据集,其训练和检测准确率均达到95%以上.在对连续波形的检测中,CNN方法在精度和召回率上优于STA/LTA和Fbpicker传统方法,并能找出大量人工挑选极易遗漏的微震事件.最后,我们应用训练好的最优模型对选自全国台网的441个台站8天的连续波形数据进行了识别、到时挑取及与参考地震目录关联,CNN检出7016段波形,用自动挑选算法拾取到1380对P,S到时,并与540个地震目录事件成功关联,对1级以上事件总体识别准确率为54%,二级以上为80%,证明了CNN模型具有泛化能力,初步展示了CNN在发展兼具效率、精度、普适性算法,实时地震监测等应用上具有巨大潜力. 展开更多
关键词 卷积神经网络 自动波形拾取
下载PDF
卷积神经网络在视觉图像检测的研究进展 被引量:80
8
作者 蓝金辉 王迪 申小盼 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期167-182,共16页
视觉图像检测在机器视觉领域有着重要的研究意义和应用价值。近年来,卷积神经网络的发展带动了视觉图像检测领域的进步。大量新理论、新方法被应用于卷积神经网络,提高了网络对特征的表达能力,降低了网络的复杂性,增强了网络的性能。研... 视觉图像检测在机器视觉领域有着重要的研究意义和应用价值。近年来,卷积神经网络的发展带动了视觉图像检测领域的进步。大量新理论、新方法被应用于卷积神经网络,提高了网络对特征的表达能力,降低了网络的复杂性,增强了网络的性能。研究阐述了卷积神经网络的基本构成,从卷积层,池化层,激活函数,网络正则化和网络优化等方面总结了卷积神经网络近年来的改进方法,梳理了卷积神经网络在视觉图像检测领域的应用,总结了卷积神经网络在视觉图像检测领域的优点,并展望了未来的研究方向。 展开更多
关键词 卷积神经网络 深度学习 机器视觉 图像检测
下载PDF
深度学习在高光谱图像分类领域的研究现状与展望 被引量:74
9
作者 张号逵 李映 姜晔楠 《自动化学报》 EI CSCD 北大核心 2018年第6期961-977,共17页
高光谱图像(Hyperspectral imagery,HSI)分类是高光谱遥感对地观测技术的一项重要内容,在军事及民用领域都有着重要的应用.然而,高光谱图像的高维特性、波段间高度相关性、光谱混合等使得高光谱图像分类面临巨大挑战.近年来,随着深度学... 高光谱图像(Hyperspectral imagery,HSI)分类是高光谱遥感对地观测技术的一项重要内容,在军事及民用领域都有着重要的应用.然而,高光谱图像的高维特性、波段间高度相关性、光谱混合等使得高光谱图像分类面临巨大挑战.近年来,随着深度学习新技术的出现,基于深度学习的高光谱图像分类在方法和性能上得到了突破性的进展,为其研究提供了新的契机.本文首先介绍了高光谱图像分类的背景、研究现状及几个常用的数据集,并简要概述了几种典型的深度学习模型,最后详细介绍了当前的一些基于深度学习的高光谱图像分类方法,总结了深度学习在高光谱图像分类领域中的主要作用和存在的问题,并对未来的研究方向进行了展望. 展开更多
关键词 深度学习 高光谱图像分类 卷积神经网络 栈式自编码网络 深度置信网络
下载PDF
基于卷积神经网络的SAR图像目标识别研究. 被引量:72
10
作者 田壮壮 占荣辉 +1 位作者 胡杰民 张军 《雷达学报(中英文)》 CSCD 2016年第3期320-325,共6页
针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的... 针对合成孔径雷达(Synthetic Aperture Radar,SAR)的图像目标识别应用,该文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量,提高了卷积神经网络的类别区分能力;然后利用改进后的卷积神经网络对SAR图像进行特征提取;最后利用支持向量机(Support Vector Machine,SVM)对特征进行分类。使用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)SAR图像数据进行实验,识别结果证明了所提方法的有效性。 展开更多
关键词 合成孔径雷达 自动目标识别 卷积神经网络 支持向量机 BP算法
下载PDF
基于CNN-SVM的深度卷积神经网络轴承故障识别研究 被引量:70
11
作者 胡晓依 荆云建 +1 位作者 宋志坤 侯银庆 《振动与冲击》 EI CSCD 北大核心 2019年第18期173-178,共6页
针对传统智能诊断方法过分依赖于信号处理和专家经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合SVM分类器搭建适于滚动轴承故障诊断的改进型深度卷积神经网络模型。从原始实测轴承振动信号出发... 针对传统智能诊断方法过分依赖于信号处理和专家经验提取故障特征以及模型泛化能力差的问题,基于深度学习理论,提出将卷积神经网络算法结合SVM分类器搭建适于滚动轴承故障诊断的改进型深度卷积神经网络模型。从原始实测轴承振动信号出发,模型逐层学习实现特征提取与故障识别,引入批量归一化、Dropout处理并改进模型分类器来提升轴承故障识别准确率、模型收敛速度和泛化能力。实验结果表明,优化后的深度学习模型可快速准确地提取轴承故障特征,针对不同类型、不同损伤程度的轴承可实现99%的识别准确率,并且模型有较强的泛化能力和强化学习能力。 展开更多
关键词 卷积神经网络 支持向量机 振动信号 故障识别
下载PDF
基于深度学习的图像超分辨率复原研究进展 被引量:67
12
作者 孙旭 李晓光 +1 位作者 李嘉锋 卓力 《自动化学报》 EI CSCD 北大核心 2017年第5期697-709,共13页
图像超分辨率复原(Super resolution restoration,SR)技术是图像处理领域的研究热点,在视频监控、图像处理、刑侦分析等领域具有广泛的应用需求.近年来,深度学习在多媒体处理领域迅猛发展,基于深度学习的图像超分辨率复原技术已逐渐成... 图像超分辨率复原(Super resolution restoration,SR)技术是图像处理领域的研究热点,在视频监控、图像处理、刑侦分析等领域具有广泛的应用需求.近年来,深度学习在多媒体处理领域迅猛发展,基于深度学习的图像超分辨率复原技术已逐渐成为主流技术.本文主要对现有基于深度学习的图像超分辨率复原工作进行综述.从网络类型、网络结构、训练方法等方面分析现有技术的优势与不足,对其发展脉络进行梳理.在此基础上,本文进一步指出了基于深度学习的图像超分辨率复原技术的未来发展方向. 展开更多
关键词 超分辨率复原 深度神经网络 卷积神经网络 循环神经网络
下载PDF
卷积神经网络在局部放电图像模式识别中的应用 被引量:62
13
作者 万晓琪 宋辉 +3 位作者 罗林根 李喆 盛戈皞 江秀臣 《电网技术》 EI CSCD 北大核心 2019年第6期2219-2226,共8页
随着大数据平台的建立,数据中心积累了大量现场检测存储的图像等非结构化数据。传统的局部放电模式识别方法一般针对结构化数据,无法直接应用于非结构化数据。为解决该问题,提出一种基于一维卷积神经网络的局部放电时域波形图像的模式... 随着大数据平台的建立,数据中心积累了大量现场检测存储的图像等非结构化数据。传统的局部放电模式识别方法一般针对结构化数据,无法直接应用于非结构化数据。为解决该问题,提出一种基于一维卷积神经网络的局部放电时域波形图像的模式识别方法。利用图像处理技术对输入图像进行预处理,获取数据一维特性并进行线性归一化。基于深度学习,利用网络直接进行模式识别。通过变电站现场带电检测和实验室模拟实验,建立了 5种局放缺陷类型的时域波形图像数据集,并进行了对比实验。实验结果表明,使用一维卷积神经网络对局放缺陷进行模式识别的正确率为88.9%,显著优于支持向量机、反向传播神经网络模型,且在相同时间复杂度情况下优于二维卷积神经网络。该方法通过网络自主学习特征,无需人工提取,实现了对时域波形图像类非结构化数据的直接识别,实验复杂度低,具有更高识别率和更好鲁棒性。 展开更多
关键词 卷积神经网络 局部放电 图像 模式识别
下载PDF
基于卷积神经网络的图像分类算法综述 被引量:60
14
作者 季长清 高志勇 +1 位作者 秦静 汪祖民 《计算机应用》 CSCD 北大核心 2022年第4期1044-1049,共6页
卷积神经网络(CNN)是目前基于深度学习的计算机视觉领域中重要的研究方向之一。它在图像分类和分割、目标检测等的应用中表现出色,其强大的特征学习与特征表达能力越来越受到研究者的推崇。然而,CNN仍存在特征提取不完整、样本训练过拟... 卷积神经网络(CNN)是目前基于深度学习的计算机视觉领域中重要的研究方向之一。它在图像分类和分割、目标检测等的应用中表现出色,其强大的特征学习与特征表达能力越来越受到研究者的推崇。然而,CNN仍存在特征提取不完整、样本训练过拟合等问题。针对这些问题,介绍了CNN的发展、CNN经典的网络模型及其组件,并提供了解决上述问题的方法。通过对CNN模型在图像分类中研究现状的综述,为CNN的进一步发展及研究方向提供了建议。 展开更多
关键词 深度学习 卷积神经网络 图像分类 特征提取 过拟合
下载PDF
基于深度学习的目标检测算法综述 被引量:57
15
作者 吴雪 宋晓茹 +1 位作者 高嵩 陈超波 《传感器与微系统》 CSCD 北大核心 2021年第2期4-7,18,共5页
视觉目标检测作为计算机视觉的一个重要研究方向,已广泛应用于人脸检测、行人检测和无人驾驶等领域。随着大数据、计算机硬件技术和深度学习算法在图像分类中的突破性进展,基于深度学习的目标检测算法成为主流。本文综述了基于深度学习... 视觉目标检测作为计算机视觉的一个重要研究方向,已广泛应用于人脸检测、行人检测和无人驾驶等领域。随着大数据、计算机硬件技术和深度学习算法在图像分类中的突破性进展,基于深度学习的目标检测算法成为主流。本文综述了基于深度学习目标检测算法的研究现状和发展方向。首先介绍卷积神经网络(CNN)的研究进展和经典模型;然后对目前主流的基于深度学习的两阶段目标检测算法和单阶段目标检测算法的发展、改进和不足进行归纳;最后对深度学习目标检测两种主流算法进行比较并做出总结和未来展望。 展开更多
关键词 目标检测 卷积神经网络 两阶段目标检测算法 单阶段目标检测算法
下载PDF
深度学习算法研究进展 被引量:56
16
作者 田启川 王满丽 《计算机工程与应用》 CSCD 北大核心 2019年第22期25-33,共9页
深度学习是人工智能领域的研究热点,利用深度学习支持人工智能的研究工作已经是必然趋势,在图像、语音、文本等领域已经展现出性能优势。对深度学习相关文献进行了分析研究,介绍了深度学习的概念和方法框架,综述了当前深度学习模型及其... 深度学习是人工智能领域的研究热点,利用深度学习支持人工智能的研究工作已经是必然趋势,在图像、语音、文本等领域已经展现出性能优势。对深度学习相关文献进行了分析研究,介绍了深度学习的概念和方法框架,综述了当前深度学习模型及其应用情况,分析了深度学习需要突破的瓶颈,指出了深度学习未来的研究方向。 展开更多
关键词 深度学习 卷积神经网络(cnn) 建模 人脸识别
下载PDF
基于卷积神经网络的车牌字符识别 被引量:55
17
作者 董峻妃 郑伯川 杨泽静 《计算机应用》 CSCD 北大核心 2017年第7期2014-2018,共5页
车牌字符识别是智能车牌识别系统中的重要组成部分。针对车牌字符类别多、背景复杂影响正确识别率的问题,提出了一种基于卷积神经网络(CNN)的车牌字符识别方法。首先对车牌字符图像进行大小归一化、去噪、二值化、细化、字符区域居中等... 车牌字符识别是智能车牌识别系统中的重要组成部分。针对车牌字符类别多、背景复杂影响正确识别率的问题,提出了一种基于卷积神经网络(CNN)的车牌字符识别方法。首先对车牌字符图像进行大小归一化、去噪、二值化、细化、字符区域居中等预处理,去除复杂背景,得到简单的字符形状结构;然后,利用所提出的CNN模型对预处理后的车牌字符集进行训练、识别。实验结果表明,所提方法能够达到99.96%的正确识别率,优于其他三种对比方法。说明所提出的CNN方法对车牌字符具有很好的识别性能,能满足实际应用需求。 展开更多
关键词 深度学习 车牌字符识别 卷积神经网络 智能交通 图像预处理
下载PDF
基于卷积神经网络的海上微动目标检测与分类方法 被引量:53
18
作者 苏宁远 陈小龙 +2 位作者 关键 牟效乾 刘宁波 《雷达学报(中英文)》 CSCD 北大核心 2018年第5期565-574,共10页
该文利用深度学习的高维特征泛化学习能力,将卷积神经网络(CNN)用于海上目标微多普勒的检测和分类。首先,在海面微动目标模型的基础上,在实测海杂波背景中分别构建4种类型微动信号的2维时频图,并作为训练和测试数据集;然后,分别采用LeNe... 该文利用深度学习的高维特征泛化学习能力,将卷积神经网络(CNN)用于海上目标微多普勒的检测和分类。首先,在海面微动目标模型的基础上,在实测海杂波背景中分别构建4种类型微动信号的2维时频图,并作为训练和测试数据集;然后,分别采用LeNet, AlexNet和GoogLeNet 3种CNN模型进行二元检测和多种微动类型分类,并进行比较,研究信杂比对检测和分类性能的影响。最后,与传统的支持向量机方法进行比较,结果表明,所提方法能够智能学习微动特征,具有更好的检测和分类性能,可为杂波背景下的雷达动目标检测和识别提供新的技术途径。 展开更多
关键词 微多普勒 雷达目标检测 深度学习 卷积神经网络(cnn) 海杂波 时频分析
下载PDF
推荐系统综述 被引量:50
19
作者 于蒙 何文涛 +3 位作者 周绪川 崔梦天 吴克奇 周文杰 《计算机应用》 CSCD 北大核心 2022年第6期1898-1913,共16页
随着网络应用的不断发展,网络资源呈指数型增长,信息过载现象日益严重,如何高效获取符合需求的资源成为困扰人们的问题之一。推荐系统能对海量信息进行有效过滤,为用户推荐符合其需求的资源。对推荐系统的研究现状进行详细介绍,包括基... 随着网络应用的不断发展,网络资源呈指数型增长,信息过载现象日益严重,如何高效获取符合需求的资源成为困扰人们的问题之一。推荐系统能对海量信息进行有效过滤,为用户推荐符合其需求的资源。对推荐系统的研究现状进行详细介绍,包括基于内容的推荐、协同过滤推荐和混合推荐这三种传统推荐方式,并重点分析了基于卷积神经网络(CNN)、深度神经网络(DNN)、循环神经网络(RNN)和图神经网络(GNN)这四种常见的深度学习推荐模型的研究进展;归纳整理了推荐领域常用的数据集,同时分析对比了传统推荐算法和基于深度学习的推荐算法的差异。最后,总结了实际应用中具有代表性的推荐模型,讨论了推荐系统面临的挑战和未来的研究方向。 展开更多
关键词 推荐算法 协同过滤 深度学习 卷积神经网络 深度神经网络 循环神经网络 图神经网络
下载PDF
构建并行卷积神经网络的表情识别算法 被引量:50
20
作者 徐琳琳 张树美 赵俊莉 《中国图象图形学报》 CSCD 北大核心 2019年第2期227-236,共10页
目的表情识别在商业、安全、医学等领域有着广泛的应用前景,能够快速准确地识别出面部表情对其研究与应用具有重要意义。传统的机器学习方法需要手工提取特征且准确率难以保证。近年来,卷积神经网络因其良好的自学习和泛化能力得到广泛... 目的表情识别在商业、安全、医学等领域有着广泛的应用前景,能够快速准确地识别出面部表情对其研究与应用具有重要意义。传统的机器学习方法需要手工提取特征且准确率难以保证。近年来,卷积神经网络因其良好的自学习和泛化能力得到广泛应用,但还存在表情特征提取困难、网络训练时间过长等问题,针对以上问题,提出一种基于并行卷积神经网络的表情识别方法。方法首先对面部表情图像进行人脸定位、灰度统一以及角度调整等预处理,去除了复杂的背景、光照、角度等影响,得到了精确的人脸部分。然后针对表情图像设计一个具有两个并行卷积池化单元的卷积神经网络,可以提取细微的表情部分。该并行结构具有3个不同的通道,分别提取不同的图像特征并进行融合,最后送入Soft Max层进行分类。结果实验使用提出的并行卷积神经网络在CK+、FER2013两个表情数据集上进行了10倍交叉验证,最终的结果取10次验证的平均值,在CK+及FER2013上取得了94. 03%与65. 6%的准确率。迭代一次的时间分别为0. 185 s和0. 101 s。结论为卷积神经网络的设计提供了一种新思路,可以在控制深度的同时扩展广度,提取更多的表情特征。实验结果表明,针对数量、分辨率、大小等差异较大的表情数据集,该网络模型均能够获得较高的识别率并缩短训练时间。 展开更多
关键词 表情识别 深度学习 卷积神经网络 并行处理 图像分类
原文传递
上一页 1 2 109 下一页 到第
使用帮助 返回顶部