An equation concerning with the subdifferential of convex functionals defined in real Banach spaces and the metric projections to level sets is shown. The equation is compared with the resolvents of general monotone o...An equation concerning with the subdifferential of convex functionals defined in real Banach spaces and the metric projections to level sets is shown. The equation is compared with the resolvents of general monotone operators, and makes the geometric properties of differential equations expressed by subdifferentials clear. Hence, it can be expected to be useful in obtaining the steepest descents defined by the convex functionals in Banach spaces. Also, it gives a similar result to the Lagrange multiplier method under certain conditions.展开更多
Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation ...Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.展开更多
文摘An equation concerning with the subdifferential of convex functionals defined in real Banach spaces and the metric projections to level sets is shown. The equation is compared with the resolvents of general monotone operators, and makes the geometric properties of differential equations expressed by subdifferentials clear. Hence, it can be expected to be useful in obtaining the steepest descents defined by the convex functionals in Banach spaces. Also, it gives a similar result to the Lagrange multiplier method under certain conditions.
文摘Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.