A novel damage detection method is applied to a 3-story frame structure, to obtain statistical quantification control criterion of the existence, location and identification of damage. The mean, standard deviation, an...A novel damage detection method is applied to a 3-story frame structure, to obtain statistical quantification control criterion of the existence, location and identification of damage. The mean, standard deviation, and exponentially weighted moving average (EWMA) are applied to detect damage information according to statistical process control (SPC) theory. It is concluded that the detection is insignificant with the mean and EWMA because the structural response is not independent and is not a normal distribution. On the other hand, the damage information is detected well with the standard deviation because the influence of the data distribution is not pronounced with this parameter. A suitable moderate confidence level is explored for more significant damage location and quantification detection, and the impact of noise is investigated to illustrate the robustness of the method.展开更多
In this paper, an optimized rmlicious nodes detection algorithm, based on Weighted Confidence Filter (WCF), is proposed to protect sensor networks from attacks. In this algorithm, each cluster head in a cluster-base...In this paper, an optimized rmlicious nodes detection algorithm, based on Weighted Confidence Filter (WCF), is proposed to protect sensor networks from attacks. In this algorithm, each cluster head in a cluster-based hierarchical network figures out an average confidence degree by means of messages from its child nodes. The cluster head only accepts a message from the child node whose confidence degree is higher than the average. Meanwhile, it updates the confidence degrees for each of its child nodes by comparing the aggregation value and the received messages, and regards them as the weight of exactness of messages from nodes. A sensor node is judged to be rmlicious if its weight value is lower than the predefined threshold. Comparative simulation results verify that the proposed WCF algorithm is better than the Weighted Trust Evaluation (WTE) in terms of the detection ratio and the false alarm ratio. More specifically, with the WCF, the detection ratio is significantly improved and the false alarm ratio is observably reduced, especially when the malicious node ratio is 0.25 or greater. When 40% of 100 sensors are malicious, the detection accuracy is above 90% and the false alarm ratio is nearly only 1.8%.展开更多
This article deals with correlating two variables that have values that fall below the known limit of detection (LOD) of the measuring device;these values are known as non-detects (NDs). We use simulation to compare s...This article deals with correlating two variables that have values that fall below the known limit of detection (LOD) of the measuring device;these values are known as non-detects (NDs). We use simulation to compare several methods for estimating the association between two such variables. The most commonly used method, simple substitution, consists of replacing each ND with some representative value such as LOD/2. Spearman’s correlation, in which all NDs are assumed to be tied at some value just smaller than the LOD, is also used. We evaluate each method under several scenarios, including small to moderate sample size, moderate to large censoring proportions, extr</span><span style="font-family:Verdana;">eme imbalance in censoring proportions, and non-bivariate nor</span><span style="font-family:Verdana;">mal (BVN) data. In this article, we focus on the coverage probability of 95% confidence intervals obtained using each method. Confidence intervals using a maximum likelihood approach based on the assumption of BVN data have acceptable performance under most scenarios, even with non-BVN data. Intervals based on Spearman’s coefficient also perform well under many conditions. The methods are illustrated using real data taken from the biomarker literature.展开更多
基金Natural Natural Science Foundation of China Under Grant No 50778077 & 50608036the Graduate Innovation Fund of Huazhong University of Science and Technology Under Grant No HF-06-028
文摘A novel damage detection method is applied to a 3-story frame structure, to obtain statistical quantification control criterion of the existence, location and identification of damage. The mean, standard deviation, and exponentially weighted moving average (EWMA) are applied to detect damage information according to statistical process control (SPC) theory. It is concluded that the detection is insignificant with the mean and EWMA because the structural response is not independent and is not a normal distribution. On the other hand, the damage information is detected well with the standard deviation because the influence of the data distribution is not pronounced with this parameter. A suitable moderate confidence level is explored for more significant damage location and quantification detection, and the impact of noise is investigated to illustrate the robustness of the method.
基金Acknowledgements This paper was supported by the National Natural Science Foundation of China under Cant No. 61170219 the Natural Science Foundation Project of CQ CSTC under Grants No. 2009BB2278, No201 1jjA40028 the 2011 Talent Plan of Chongqing Higher Education.
文摘In this paper, an optimized rmlicious nodes detection algorithm, based on Weighted Confidence Filter (WCF), is proposed to protect sensor networks from attacks. In this algorithm, each cluster head in a cluster-based hierarchical network figures out an average confidence degree by means of messages from its child nodes. The cluster head only accepts a message from the child node whose confidence degree is higher than the average. Meanwhile, it updates the confidence degrees for each of its child nodes by comparing the aggregation value and the received messages, and regards them as the weight of exactness of messages from nodes. A sensor node is judged to be rmlicious if its weight value is lower than the predefined threshold. Comparative simulation results verify that the proposed WCF algorithm is better than the Weighted Trust Evaluation (WTE) in terms of the detection ratio and the false alarm ratio. More specifically, with the WCF, the detection ratio is significantly improved and the false alarm ratio is observably reduced, especially when the malicious node ratio is 0.25 or greater. When 40% of 100 sensors are malicious, the detection accuracy is above 90% and the false alarm ratio is nearly only 1.8%.
文摘This article deals with correlating two variables that have values that fall below the known limit of detection (LOD) of the measuring device;these values are known as non-detects (NDs). We use simulation to compare several methods for estimating the association between two such variables. The most commonly used method, simple substitution, consists of replacing each ND with some representative value such as LOD/2. Spearman’s correlation, in which all NDs are assumed to be tied at some value just smaller than the LOD, is also used. We evaluate each method under several scenarios, including small to moderate sample size, moderate to large censoring proportions, extr</span><span style="font-family:Verdana;">eme imbalance in censoring proportions, and non-bivariate nor</span><span style="font-family:Verdana;">mal (BVN) data. In this article, we focus on the coverage probability of 95% confidence intervals obtained using each method. Confidence intervals using a maximum likelihood approach based on the assumption of BVN data have acceptable performance under most scenarios, even with non-BVN data. Intervals based on Spearman’s coefficient also perform well under many conditions. The methods are illustrated using real data taken from the biomarker literature.