GaAs multiple concentric nano-ring structures(CNRs)are prepared with multistep crystallization procedures by droplets epitaxy on GaAs(001)to explore the influence of different initial crystallization temperatures on C...GaAs multiple concentric nano-ring structures(CNRs)are prepared with multistep crystallization procedures by droplets epitaxy on GaAs(001)to explore the influence of different initial crystallization temperatures on CNRs morphology.Atomic force microscope(AFM)images show that GaAs nanostructures are more likely to form elliptical rings due to diffusion anisotropy.Meanwhile,with the increase of initial crystallization temperature,the inner ring height and density of CNRs are increased,and outer rings are harder to form.In addition,the mechanism of formation of CNRs is discussed by classical nucleation theory and diffusion theory.The method can be used to calculate the diffusion activation energy of gallium atoms(0.7±0.1 eV)on the GaAs(001)surface conveniently.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564002 and 11664005)the Science and Technology Foundation of Guizhou Province,China(Grant No.QKH-[2017]1055)Guizhou University Talent Foundation(Grant No.GDJHZ-[2015]23)。
文摘GaAs multiple concentric nano-ring structures(CNRs)are prepared with multistep crystallization procedures by droplets epitaxy on GaAs(001)to explore the influence of different initial crystallization temperatures on CNRs morphology.Atomic force microscope(AFM)images show that GaAs nanostructures are more likely to form elliptical rings due to diffusion anisotropy.Meanwhile,with the increase of initial crystallization temperature,the inner ring height and density of CNRs are increased,and outer rings are harder to form.In addition,the mechanism of formation of CNRs is discussed by classical nucleation theory and diffusion theory.The method can be used to calculate the diffusion activation energy of gallium atoms(0.7±0.1 eV)on the GaAs(001)surface conveniently.