The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are il- lustrated. The optimizations are done under 1 sun, 100 suns and 200 suns using the 2D numerical simulation tool T...The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are il- lustrated. The optimizations are done under 1 sun, 100 suns and 200 suns using the 2D numerical simulation tool TCAD software. The optimum finger spacing and its range decrease with the increase in sheet resistance and con- centration ratio. The processes of the diffusion and oxidization in the manufacture flow of the silicon solar cells were simulated to get a series of typical emitter dopant profiles to optimize. The efficiency of the solar cell under 100 suns and 200 suns increased with the decrease in diffusion temperature and the increase in oxidation tempera- ture and time when the diffusion temperature is lower than or equal to 865 ℃. The effect of sheet resistance of the emitter on series resistance and the conversion efficiency of the solar cell under concentration was discussed.展开更多
A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance ...A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ~C and 36.3 ~C respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.展开更多
A new transparent photovoltaic panel composed of a luminescent solar concentrator and Al/BaTiO3/ZnO/Pt ferroelectric solar cells is presented,in which a portion of the incoming solar illumination is converted by the f...A new transparent photovoltaic panel composed of a luminescent solar concentrator and Al/BaTiO3/ZnO/Pt ferroelectric solar cells is presented,in which a portion of the incoming solar illumination is converted by the fluorophores to ultraviolet(UV)light which is then absorbed by ZnO.Firstly,the solar cells are simulated using Atlas-Silvaco.Then,the panel is modelled based on the obtained solar cell characteristics.This panel would be of great importance for building integrated photovoltaics domain because of its high transparency.展开更多
利用恒压频闪式I-V曲线测试仪研究分析温度和光强对聚光硅电池特性参数的影响。研究发现,聚光硅电池开路电压V_(oc) 的温度系数随聚光比升高不断降低,从1倍聚光比的-1.97 m V/K降低到30倍聚光比的-1.71 m V/K,和其理论计算值吻合较好;...利用恒压频闪式I-V曲线测试仪研究分析温度和光强对聚光硅电池特性参数的影响。研究发现,聚光硅电池开路电压V_(oc) 的温度系数随聚光比升高不断降低,从1倍聚光比的-1.97 m V/K降低到30倍聚光比的-1.71 m V/K,和其理论计算值吻合较好;和普通单晶硅电池开路电压V_(oc) 温度系数相比,该电池的要小,上述说明聚光硅电池在聚光下工作有利于其在较高温度下操作。聚光硅电池填充因子和效率均随温度升高而降低;由于串联电阻影响,该电池效率随聚光比的增大先增后减,适合在小于20倍聚光比下的系统中工作。可进一步优化该电池金属栅线覆盖率和阻值引起的功率损失以提高其适合应用的聚光比。展开更多
基金supported by the National Natural Science Foundation of China(Nos.60776046,60976046,60837001,61021003)the National Basic Research Program of China(No.2010CB933800)
文摘The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are il- lustrated. The optimizations are done under 1 sun, 100 suns and 200 suns using the 2D numerical simulation tool TCAD software. The optimum finger spacing and its range decrease with the increase in sheet resistance and con- centration ratio. The processes of the diffusion and oxidization in the manufacture flow of the silicon solar cells were simulated to get a series of typical emitter dopant profiles to optimize. The efficiency of the solar cell under 100 suns and 200 suns increased with the decrease in diffusion temperature and the increase in oxidation tempera- ture and time when the diffusion temperature is lower than or equal to 865 ℃. The effect of sheet resistance of the emitter on series resistance and the conversion efficiency of the solar cell under concentration was discussed.
基金supported by the Doctoral Initial Fund of Beijing University of Technology,China(Grant No.X0006015201101)the National Natural Science Foundation of China(Grant Nos.60876006 and 51202007)
文摘A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ~C and 36.3 ~C respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.
文摘A new transparent photovoltaic panel composed of a luminescent solar concentrator and Al/BaTiO3/ZnO/Pt ferroelectric solar cells is presented,in which a portion of the incoming solar illumination is converted by the fluorophores to ultraviolet(UV)light which is then absorbed by ZnO.Firstly,the solar cells are simulated using Atlas-Silvaco.Then,the panel is modelled based on the obtained solar cell characteristics.This panel would be of great importance for building integrated photovoltaics domain because of its high transparency.
文摘利用恒压频闪式I-V曲线测试仪研究分析温度和光强对聚光硅电池特性参数的影响。研究发现,聚光硅电池开路电压V_(oc) 的温度系数随聚光比升高不断降低,从1倍聚光比的-1.97 m V/K降低到30倍聚光比的-1.71 m V/K,和其理论计算值吻合较好;和普通单晶硅电池开路电压V_(oc) 温度系数相比,该电池的要小,上述说明聚光硅电池在聚光下工作有利于其在较高温度下操作。聚光硅电池填充因子和效率均随温度升高而降低;由于串联电阻影响,该电池效率随聚光比的增大先增后减,适合在小于20倍聚光比下的系统中工作。可进一步优化该电池金属栅线覆盖率和阻值引起的功率损失以提高其适合应用的聚光比。