Metaphor computation has attracted more and more attention because metaphor, to some extent, is the focus of mind and language mechanism. However, it encounters problems not only due to the rich expressive power of na...Metaphor computation has attracted more and more attention because metaphor, to some extent, is the focus of mind and language mechanism. However, it encounters problems not only due to the rich expressive power of natural language but also due to cognitive nature of human being. Therefore machine-understanding of metaphor is now becoming a bottle-neck in natural language processing and machine translation. This paper first suggests how a metaphor is understood and then presents a survey of current computational approaches, in terms of their linguistic historical roots, underlying foundations, methods and techniques currently used, advantages, limitations, and future trends. A comparison between metaphors in English and Chinese languages is also introduced because compared with development in English language Chinese metaphor computation is just at its starting stage. So a separate summarization of current progress made in Chinese metaphor computation is presented. As a conclusion, a few suggestions are proposed for further research on metaphor computation especially on Chinese metaphor computation.展开更多
The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of t...The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.展开更多
Coalition logic (CL) enables us to model the strategic abilities and specify what a group of agents can achieve whatever the other agents do. However, some rational mental attitudes of the agents are beyond the scop...Coalition logic (CL) enables us to model the strategic abilities and specify what a group of agents can achieve whatever the other agents do. However, some rational mental attitudes of the agents are beyond the scope of CL such as the prestigious beliefs, desires and intentions (BDI) which is an interesting and useful epistemic notion and has spawned substantial amount of studies in multi-agent systems. In this paper, we introduce a first-order coalition BDI (FCBDI) logic for multi-agent systems, which provides a semantic glue that allows the formal embedding and interaction of BDI, coalition and temporal operators in a first-order language. We further introduce a semantic model based on the interpreted system model and present an axiomatic system that is proved sound and complete with respect to the semantics. Finally, it is shown that the computational complexity of its model checking in finite structures is PSPACE-complete.展开更多
In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a...In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 60373080.
文摘Metaphor computation has attracted more and more attention because metaphor, to some extent, is the focus of mind and language mechanism. However, it encounters problems not only due to the rich expressive power of natural language but also due to cognitive nature of human being. Therefore machine-understanding of metaphor is now becoming a bottle-neck in natural language processing and machine translation. This paper first suggests how a metaphor is understood and then presents a survey of current computational approaches, in terms of their linguistic historical roots, underlying foundations, methods and techniques currently used, advantages, limitations, and future trends. A comparison between metaphors in English and Chinese languages is also introduced because compared with development in English language Chinese metaphor computation is just at its starting stage. So a separate summarization of current progress made in Chinese metaphor computation is presented. As a conclusion, a few suggestions are proposed for further research on metaphor computation especially on Chinese metaphor computation.
基金supported by the National Natural Science Foundation of China ( No. 61025019No. 90820016)+1 种基金Program for New Century Excellent Talents in University ( No. NECT-07-0735)Natural Science Foundation of Hebei ( No. F2009001638)
文摘The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.
文摘Coalition logic (CL) enables us to model the strategic abilities and specify what a group of agents can achieve whatever the other agents do. However, some rational mental attitudes of the agents are beyond the scope of CL such as the prestigious beliefs, desires and intentions (BDI) which is an interesting and useful epistemic notion and has spawned substantial amount of studies in multi-agent systems. In this paper, we introduce a first-order coalition BDI (FCBDI) logic for multi-agent systems, which provides a semantic glue that allows the formal embedding and interaction of BDI, coalition and temporal operators in a first-order language. We further introduce a semantic model based on the interpreted system model and present an axiomatic system that is proved sound and complete with respect to the semantics. Finally, it is shown that the computational complexity of its model checking in finite structures is PSPACE-complete.
基金supported by the project of the National Social Science Fundation(21BJL052,20BJY020,20BJL127,19BJY090)the 2018 Fujian Social Science Planning Project(FJ2018B067)The Planning Fund Project of Humanities and Social Sciences Research of the Ministry of Education in 2019(19YJA790102),The grant has been received by Aoqi Xu.
文摘In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.