In a test rig,pulverized semi-coke was preheated to 850℃in a circulating fluidized bed(CFB)and then cornbusted at 1100℃in a down-fired combustor(DFC).Experiments were conducted to reveal the effects of three seconda...In a test rig,pulverized semi-coke was preheated to 850℃in a circulating fluidized bed(CFB)and then cornbusted at 1100℃in a down-fired combustor(DFC).Experiments were conducted to reveal the effects of three secondary air nozzle cases(co-axial jet,top circular jet and wall circular jet)on the NO emission.The results show that the optimized secondary air nozzle can reduce NO emission.O_2 concentration profile is the major factor affecting NO generation and emission,which is led by the secondary air nozzle.The lower O_2 concentration led to the generation of lower initial NO.The NO emission at the exit of the DFC was reduced from 189 to 92mg/m^3(@6%O_2)with the decrease of initial generation.The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH_3 in the syngas,rather than the oxidization of fuel-N in the char.The low and well-distributed O_2 concentration contributes to the reduction of initial NO,which helps to reduce the NO emission.The combustion effieiencies of the eases of the co-axial jet,the top circular jet,and the wall circular jet are97.88%,98.94%and 98.74%,respectively.展开更多
The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustio...The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA07030100)
文摘In a test rig,pulverized semi-coke was preheated to 850℃in a circulating fluidized bed(CFB)and then cornbusted at 1100℃in a down-fired combustor(DFC).Experiments were conducted to reveal the effects of three secondary air nozzle cases(co-axial jet,top circular jet and wall circular jet)on the NO emission.The results show that the optimized secondary air nozzle can reduce NO emission.O_2 concentration profile is the major factor affecting NO generation and emission,which is led by the secondary air nozzle.The lower O_2 concentration led to the generation of lower initial NO.The NO emission at the exit of the DFC was reduced from 189 to 92mg/m^3(@6%O_2)with the decrease of initial generation.The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH_3 in the syngas,rather than the oxidization of fuel-N in the char.The low and well-distributed O_2 concentration contributes to the reduction of initial NO,which helps to reduce the NO emission.The combustion effieiencies of the eases of the co-axial jet,the top circular jet,and the wall circular jet are97.88%,98.94%and 98.74%,respectively.
基金financially sponsored by the National Natural Science Foundation of China (Nos. 51774114 and 51404090)
文摘The adjustment of the gas drainage rate has an immediate impact on air leakage in gob,thus resulting in the change of self-heating of coal.While regulating the gas drainage parameters,the risk of spontaneous combustion of coal should be considered.The risk assessment of gas control and spontaneous combustion of coal under gas drainage in a tunnel was investigated at different gas drainage rates.The distributions of the air volume along the working face,the gas management effects and the width of the oxidation zone were subjected to risk analysis.As the simulation results showed,with increasing gas drainage rate,although the safety of gas dilution by ventilation was assured,the intensifying air leakage caused the oxidation zone to move into the deeper gob and led to an increase in the width of the oxidation zone.A risk assessment method was proposed to determine a suitable gas drainage rate for the upper tunnel.The correctness of the risk assessment and the validity of the numerical modelling were confirmed by the field measurements.