An ammonia leaching process was utilized to extract Co, Ni and Cu from oceanic polymetallic nodules, whereas an acid leaching process was utilized to extract Co, Ni, Cu, Zn and Mn from cobalt-rich crusts. Both process...An ammonia leaching process was utilized to extract Co, Ni and Cu from oceanic polymetallic nodules, whereas an acid leaching process was utilized to extract Co, Ni, Cu, Zn and Mn from cobalt-rich crusts. Both processes produced nanometer materials-ammonia leaching residue and acid leaching residue. A systematic study was conducted on the phase, composition and physicochemistry properties of these residues. The result shows that both residues contain a large amount of nanometer minerals. Ammonia leaching residue mainly consists of rhodochrosite, with the average grain diameter of 17.9 nm; whereas the acid leaching residue mainly consists of well-developed bassanite, with the average grain deameter of 9.5 nm. The bassanite also has a microporous structure, the volume of the pore space is 1.23×10-2 mL/g. Both the ammonia and acid leaching residues have a large specific surface area, and they display a strong adsorption capacity to saturate sodium chloride vapour, N2 and SO2. Both residues have high展开更多
基金This work was sponsored by the International Ocean Area Research & Development Tenth Five-Year Plan Programme (Grant No. DY105-04-01-9).
文摘An ammonia leaching process was utilized to extract Co, Ni and Cu from oceanic polymetallic nodules, whereas an acid leaching process was utilized to extract Co, Ni, Cu, Zn and Mn from cobalt-rich crusts. Both processes produced nanometer materials-ammonia leaching residue and acid leaching residue. A systematic study was conducted on the phase, composition and physicochemistry properties of these residues. The result shows that both residues contain a large amount of nanometer minerals. Ammonia leaching residue mainly consists of rhodochrosite, with the average grain diameter of 17.9 nm; whereas the acid leaching residue mainly consists of well-developed bassanite, with the average grain deameter of 9.5 nm. The bassanite also has a microporous structure, the volume of the pore space is 1.23×10-2 mL/g. Both the ammonia and acid leaching residues have a large specific surface area, and they display a strong adsorption capacity to saturate sodium chloride vapour, N2 and SO2. Both residues have high