In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Ba...In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
现有无监督哈希检索算法的关注点在于哈希映射过程中的信息损失以及生成哈希的质量问题,忽略了图像特征本身对检索精度的影响。为进一步提高检索的精度,提出一种改进的基于特征共现的无监督哈希检索算法(Unsupervised Hash retrieval al...现有无监督哈希检索算法的关注点在于哈希映射过程中的信息损失以及生成哈希的质量问题,忽略了图像特征本身对检索精度的影响。为进一步提高检索的精度,提出一种改进的基于特征共现的无监督哈希检索算法(Unsupervised Hash retrieval algorithm based on Feature Co-occurrence,UHFC)。该算法共分为两个阶段:深度特征提取和无监督哈希生成。为提高图像特征的质量,UHFC在卷积神经网络(Convolutional Neural Network,CNN)结构的最后一层卷积后引入了共现层,用来提取特征之间的依赖关系。并用共现激活值的均值来表示共现程度,解决原共现操作存在相同两个通道的共现值不一致的问题;接着,在特征融合部分UHFC设计一种适用于共现特征融合的,结合空间注意力机制的注意特征融合方法(Attention Feature Fusion method based on Spatial attention,AFF-S)。通过注意力机制自主学习共现特征与深度特征融合的权重,降低特征融合过程中背景因素的干扰,提高最终图像特征的表达能力。最后,根据最优传输策略,UHFC采用双半分布哈希编码对图像特征到哈希码的映射过程进行监督,并在哈希层后添加一层分类层通过KL损失进一步提高哈希码所包含的图片信息,整个训练过程中无需数据集的标注,实现无监督哈希的生成。实验表明,UHFC对哈希编码质量改善较好,在Flickr25k和Nus-wide数据集上其平均均值精度(mean Average Precision,mAP)分别达到了87.8%和82.8%,相比于baseline方法分别提高了2.1%与1.2%,效果明显。展开更多
基金Projects 40771143 supported by the National Natural Science Foundation of China2007AA12Z162 by the Hi-tech Research and Development Program of China
文摘In this study,analyses are conducted on the information features of a construction site,a cornfield and subsidence seeper land in a coal mining area with a synthetic aperture radar (SAR) image of medium resolution. Based on features of land cover of the coal mining area,on texture feature extraction and a selection method of a gray-level co-occurrence matrix (GLCM) of the SAR image,we propose in this study that the optimum window size for computing the GLCM is an appropriate sized window that can effectively distinguish different types of land cover. Next,a band combination was carried out over the text feature images and the band-filtered SAR image to secure a new multi-band image. After the transformation of the new image with principal component analysis,a classification is conducted selectively on three principal component bands with the most information. Finally,through training and experimenting with the samples,a better three-layered BP neural network was established to classify the SAR image. The results show that,assisted by texture information,the neural network classification improved the accuracy of SAR image classification by 14.6%,compared with a classification by maximum likelihood estimation without texture information.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
文摘现有无监督哈希检索算法的关注点在于哈希映射过程中的信息损失以及生成哈希的质量问题,忽略了图像特征本身对检索精度的影响。为进一步提高检索的精度,提出一种改进的基于特征共现的无监督哈希检索算法(Unsupervised Hash retrieval algorithm based on Feature Co-occurrence,UHFC)。该算法共分为两个阶段:深度特征提取和无监督哈希生成。为提高图像特征的质量,UHFC在卷积神经网络(Convolutional Neural Network,CNN)结构的最后一层卷积后引入了共现层,用来提取特征之间的依赖关系。并用共现激活值的均值来表示共现程度,解决原共现操作存在相同两个通道的共现值不一致的问题;接着,在特征融合部分UHFC设计一种适用于共现特征融合的,结合空间注意力机制的注意特征融合方法(Attention Feature Fusion method based on Spatial attention,AFF-S)。通过注意力机制自主学习共现特征与深度特征融合的权重,降低特征融合过程中背景因素的干扰,提高最终图像特征的表达能力。最后,根据最优传输策略,UHFC采用双半分布哈希编码对图像特征到哈希码的映射过程进行监督,并在哈希层后添加一层分类层通过KL损失进一步提高哈希码所包含的图片信息,整个训练过程中无需数据集的标注,实现无监督哈希的生成。实验表明,UHFC对哈希编码质量改善较好,在Flickr25k和Nus-wide数据集上其平均均值精度(mean Average Precision,mAP)分别达到了87.8%和82.8%,相比于baseline方法分别提高了2.1%与1.2%,效果明显。