期刊文献+

基于小波纹理特征的医学图像检索 被引量:3

Medical Image Retrieval Based on Wavelet Texture Feature
下载PDF
导出
摘要 为了缩小图像高层语义与底层特征之间的鸿沟,提出了一种基于共生矩阵的图像纹理特征提取的新方法.该方法结合了图像的频域统计特征和空间分布特性,首先通过小波变换提取图像的局部频域信息,然后结合图像的整体结构特征,构建用于提取图像纹理特征的小波灰度共生矩阵.通过对比实验表明,与分别使用其他灰度共生矩阵和小波特征相比,基于小波灰度共生矩阵的纹理特征提取方法在医学图像检索中取得了更好的效果. To eliminate the gap between the high-level semantics and the low-level features of images, a new method based on co-occurrence matrix is proposed to extract image texture feature. Combining the image's statistical features in the frequency domain with its spatial distribution attributes, the method extracts the local frequency information on image by wavelet transforming. Then the image's global structural characteristics are integrated with its wavelet properties to construct the wavelet-gray co-occurrence matrix so as to extract the image's texture features for the retrieval of medical images. The results of comparative test showed that the wavelet-gray co-occurrence matrix is superior in medical image retrieval in comparison to other ways where the co-occurrence matrix is separated from wavelet features in applications.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第3期341-344,共4页 Journal of Northeastern University(Natural Science)
基金 国家重点基础研究发展规划项目(2006CB303103)
关键词 共生矩阵 纹理 小波变换 特征提取 图像检索 co-occurrence matrix texture wavelet transforming feature extraction image retrieval
  • 相关文献

参考文献9

  • 1徐杰,施鹏飞.基于内容的图象检索技术[J].中国图象图形学报(A辑),2003,8(9):977-983. 被引量:33
  • 2Bala J. Combining structural and statistical features in a machine learning technique for texture classification [ C ]// Proceedings of the 3rd International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems. New York: ACM, 1990:175-183. 被引量:1
  • 3Ma W Y, Manjunath B S. NETRA: a toolbox for navigating large image databases [J ]. Multimedia Systems, 1999, 7 (3) : 184 - 198. 被引量:1
  • 4Ohanian P P, Dubes R C. Performance evaluation for four classes of texture feature[J]. Pattern Recognition, 1992,25 (8) :819 - 833. 被引量:1
  • 5Setia L, Teynor A, Halawani A, et al. Image classification using cluster matrices of local relational features [C]//Proceedings of the 8th ACM International Workshop Multimedia Information Retrieval. New York: Association for Computing Machinery, 2006:173-182. 被引量:1
  • 6Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8) :837 - 842. 被引量:1
  • 7Lee T S. Image representation using 2D Gabor wavelets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(10) :959 - 971. 被引量:1
  • 8Zhang D, Kong W K. Online palmprint identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(9) : 1041 - 1050. 被引量:1
  • 9修非,吴霜,付立冬,鲍玉斌,王大玲.基于灰度-单元差分共生矩阵的医学图像的检索与分类[J].计算机研究与发展,2007,44(z3):183-188. 被引量:1

二级参考文献14

  • 1[6]P P Ohanian,R C Dubes.Performance evaluation for four classes of texture feature.Pattern Recognition,1992,25(8):819-833 被引量:1
  • 2[8]Lokesh Setia,Alexandra Teynor,Alaa Halawani,et al.Image classification using cluster co-occurrence matrices of local relational features.The 8th ACM SIGMM Int'l Workshop on Multimedia Information Retrieval,Santa Barbara,CA,2006 被引量:1
  • 3[11]Joaquim Cezar Felipe.Perceptual distance functions for similarity retrieval of medical images.The 5th Int'l Conf on Image and Video Retrieval (CIVR),Tempe,AZ,USA,2006 被引量:1
  • 4[13]Jerzy Bala.Combining structural and statistical features in a machine leaning technique for texture classification.The 3rd Int'l Conf on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE'90) Charleston,USA,1990 被引量:1
  • 5[1]H Muller,N Michoux,D Bandon,et al.A review of content-based image retrieval systems in medical applications-clinical benefits and future directions.International Journal of Medical Informatiocits,2004,73(1):1-23 被引量:1
  • 6[5]M Y Ma,B S Manjunath.A comparison of wavelet transform feature for texture image annotation.Int'l Conf on Medical Image Processing,Washington,USA,1995 被引量:1
  • 7崔伟东,周志华,李星.支持向量机研究[J].计算机工程与应用,2001,37(1):58-61. 被引量:88
  • 8高永英,章毓晋.基于多级描述模型的渐进式图像内容理解[J].电子学报,2001,29(10):1376-1380. 被引量:12
  • 9段立娟,高文,林守勋,马继涌.图像检索中的动态相似性度量方法[J].计算机学报,2001,24(11):1156-1162. 被引量:13
  • 10张磊,林福宗,张钹.基于神经网络自学习的图像检索方法[J].软件学报,2001,12(10):1479-1485. 被引量:12

共引文献32

同被引文献60

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部