T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cu...T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cutting forces and stability. If cutting conditions are not selected properly the process may result in the poor surface finish of the workpiece and the potential damage to the machine tool. Currently, the predication of chatter stability and determination of optimal cutting conditions based on the modeling of T-slot milling process is an effective way to improve the material removal rate(MRR) of a T-slot milling operation. Based on the geometrical model of the T-slot cutter, the dynamic cutting force model was presented in which the average directional cutting force coefficients were obtained by means of numerical approach, and leads to an analytical determination of stability lobes diagram(SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut was also created to satisfy the special requirement of T-slot milling. Thereafter, a dynamic simulation model of T-slot milling was implemented using Matlab software. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machining center were measured in both feed and normal directions by an instrumented hammer and accelerators. Dynamic simulations were conducted to obtain the predicated SLD under specified cutting conditions with both the proposed model and CutPro~. Meanwhile, a set of cutting trials were conducted to reveal whether the cutting process under specified cutting conditions is stable or not. Both the simulation comparison and experimental verification demonstrated that the satisfactory coincidence between the simulated, the predicted and the experimental results. The chatter-free T-slot milling with higher MRR can be achieved under the cutting conditions determined according to the SLD simulation.展开更多
In high speed milling aeronautical part,tool condition monitoring(TCM)is very important,because it is prone to get a chatter owing to the low stiffness of thin-walled structures.And the TCM is key technology for autom...In high speed milling aeronautical part,tool condition monitoring(TCM)is very important,because it is prone to get a chatter owing to the low stiffness of thin-walled structures.And the TCM is key technology for automated machining.In this paper,aiming to chatter monitoring in thin-walled structure milling,a variational mode decomposition–energy distribution(VMD-ED)method is proposed to improve the identification accuracy.And a moving average root mean square–mean value(MARMS-MV)identification method and a variational mode decomposition–energy entropy(VMD-EE)identification method are also tested.Identification accuracy and computing time of the three methods are compared.The vibration signals collected from the spindle and worktable are also contrasted.The conducted experimental study shows that,the proposed VMD-ED method offers an identification method for chatter monitoring with greater sensitivity,better stability and less computing time,and mounting the vibration sensor on worktable is better than spindle for a chatter monitoring system.展开更多
基金supported by National Science and Technology Support Program of China (Grant No. 2006BAF01B09-03)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800060010)Hunan Provincial Educational Department Scientific Research Project of China (Grant No. 08D096)
文摘T-slot milling is one of the most common milling processes in industry. Despite recent advances in machining technology, productivity of T-slot milling is usually limited due to the process limitations such as high cutting forces and stability. If cutting conditions are not selected properly the process may result in the poor surface finish of the workpiece and the potential damage to the machine tool. Currently, the predication of chatter stability and determination of optimal cutting conditions based on the modeling of T-slot milling process is an effective way to improve the material removal rate(MRR) of a T-slot milling operation. Based on the geometrical model of the T-slot cutter, the dynamic cutting force model was presented in which the average directional cutting force coefficients were obtained by means of numerical approach, and leads to an analytical determination of stability lobes diagram(SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut was also created to satisfy the special requirement of T-slot milling. Thereafter, a dynamic simulation model of T-slot milling was implemented using Matlab software. In order to verify the effectiveness of the approach, the transfer functions of a typical cutting system in a vertical CNC machining center were measured in both feed and normal directions by an instrumented hammer and accelerators. Dynamic simulations were conducted to obtain the predicated SLD under specified cutting conditions with both the proposed model and CutPro~. Meanwhile, a set of cutting trials were conducted to reveal whether the cutting process under specified cutting conditions is stable or not. Both the simulation comparison and experimental verification demonstrated that the satisfactory coincidence between the simulated, the predicted and the experimental results. The chatter-free T-slot milling with higher MRR can be achieved under the cutting conditions determined according to the SLD simulation.
基金co-supported by the National Key Research and Development Program of China(No.2019YFB1704800).
文摘In high speed milling aeronautical part,tool condition monitoring(TCM)is very important,because it is prone to get a chatter owing to the low stiffness of thin-walled structures.And the TCM is key technology for automated machining.In this paper,aiming to chatter monitoring in thin-walled structure milling,a variational mode decomposition–energy distribution(VMD-ED)method is proposed to improve the identification accuracy.And a moving average root mean square–mean value(MARMS-MV)identification method and a variational mode decomposition–energy entropy(VMD-EE)identification method are also tested.Identification accuracy and computing time of the three methods are compared.The vibration signals collected from the spindle and worktable are also contrasted.The conducted experimental study shows that,the proposed VMD-ED method offers an identification method for chatter monitoring with greater sensitivity,better stability and less computing time,and mounting the vibration sensor on worktable is better than spindle for a chatter monitoring system.