AIM: To establish clone cells with different metastatic potential for the study of metastasis-related mechanisms. METHODS: Cloning procedure was performed on parental hepatocellular carcinoma (HCC) cell line MHCC97, a...AIM: To establish clone cells with different metastatic potential for the study of metastasis-related mechanisms. METHODS: Cloning procedure was performed on parental hepatocellular carcinoma (HCC) cell line MHCC97, and biological characteristics of the target clones selected by in vivo screening were studied. RESULTS: Two clones with high (MHCC97-H) and low (MHCC97-L) metastatic potential were isolated from the parent cell line. Compared with MHCC97-L, MHCC97-H had smaller cell size (average cell diameter 43 microm vs 50 microm) and faster in vitro and in vivo growth rate (tumor cell doubling time was 34.2h vs 60.0h). The main ranges of chromosomes were 55-58 in MHCC97-H and 57-62 in MHCC97-L. Boyden chamber in vitro invasion assay demonstrated that the number of penetrating cells through the artificial basement membrane was (37.5 +/- 11.0) cells/field for MHCC97-H vs (17.7 +/- 6.3)/field for MHCC97-L. The proportions of cells in G0-G1 phase, S phase, and G2-M phase for MHCC97-H/MHCC97-L were 0.56/0.65, 0.28/0.25 and 0.16/0.10, respectively, as measured by flow cytometry. The serum AFP levels in nude mice 5wk after orthotopic implantation of tumor tissue were (246 +/- 66) microg.L(-1) for MHCC97-H and (91 +/- 66) microg.L(-1) for MHCC97-L. The pulmonary metastatic rate was 100% (10/10) vs 40% (4/10). CONCLUSION: Two clones of the same genetic background but with different biological behaviors were established, which could be valuable models for investigation on HCC metastasis.展开更多
Adult somatic cell nuclear transfer was con-ducted by using cultured ear fibroblast cells obtained from a Holstein female cow (GN) and a Galoway herd bull (GLV). The percentages of reconstructed eggs developed into bl...Adult somatic cell nuclear transfer was con-ducted by using cultured ear fibroblast cells obtained from a Holstein female cow (GN) and a Galoway herd bull (GLV). The percentages of reconstructed eggs developed into blas-tocysts were similar in GN (23.98%, 123 of 513) and in GLV groups (29.55%, 138 of 467). However, the rate of recon-structed female (GN) embryos developed into term was higher than that of male (GLV) (8.02% and 1.82%, respec-tively). Three kinds of cows, Luxi Yellow cows, Holstein heifers and Holstein cows with normal reproductive records were used as recipients. When the reconstructed embryos from GN were transferred, there was no difference in the pregnancy rate among three kinds of recipients, but the abortion rate of Luxi Yellow cows was significantly higher (85.71%) than in the other two groups (14.29% and 0%, respectively; P < 0.05). And the percentages of newborn calves in transferred embryos were significantly different between Luxi Yellow cows and Holstein breed (1.54%, 10.39% and 20.0%, respectively, P < 0.05). However, when reconstructed embryos from GLV were transferred, there was no difference among three kinds of recipients in the pregnancy rate, the abortion rate and the delivery rate.展开更多
The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells ...The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet-like clusters, as identified by di-thizone staining, which e展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a primary contributor to cancer-related mortality on a global scale.However,the underlying molecular mechanisms are still poorly understood.Long noncoding RNAs are emerging m...BACKGROUND Hepatocellular carcinoma(HCC)is a primary contributor to cancer-related mortality on a global scale.However,the underlying molecular mechanisms are still poorly understood.Long noncoding RNAs are emerging markers for HCC diagnosis,prognosis,and therapeutic target.No study of LINC01767 in HCC was published.AIM To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time.METHODS DESeq2 Package was used to analyze different gene expressions.Receiver operating characteristic curves assessed the diagnostic performance.Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis.The least absolute shrinkage and selection operator(LASSO)-Cox was used to identify the prediction model.Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction,next generation sequencing was performed following LINC01767 over expression(GSE243371),and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out.In vitro experiment in Huh7 cell was carried out.RESULTS LINC01767 was down-regulated in HCC with a log fold change=1.575 and was positively correlated with the cancer stemness.LINC01767 was a good diagnostic marker with area under the curve(AUC)[0.801,95% confidence interval(CI):0.751-0.852,P=0.0106]and an independent predictor for overall survival(OS)with hazard ratio=1.899(95%CI:1.01-3.58,P=0.048).LINC01767 nomogram model showed a satisfied performance.The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways.LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC>0.75.LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line;the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro.CONCL展开更多
The pathology of Alzheimer’s disease involves a long preclinical period,where the characteristic clinical symptoms of the changes in the brain are undetectable.During the preclinical period,homeostatic mechanisms may...The pathology of Alzheimer’s disease involves a long preclinical period,where the characteristic clinical symptoms of the changes in the brain are undetectable.During the preclinical period,homeostatic mechanisms may help prevent widespread cell death.Evidence has pointed towards selective cell death of diseased neurons playing a potentially protective role.As the disease progresses,dysregulation of signaling pathways that govern cell death contributes to neurodegeneration.Aberrant activation of the c-Jun N-terminal kinase pathway has been established in human and animal models of Alzheimer’s disease caused by amyloid-beta 42-or tau-mediated neurodegeneration.Clonal mosaic studies in Drosophila that examine amyloid-beta 42 in a subset of neurons suggest complex interplay between amyloid-beta 42-expressing and wild-type cells.This review examines the role of c-Jun N-terminal kinase signaling in the context of cell competition and short-range signaling interactions between amyloid-beta 42-expressing and wild-type neurons.Cell competition is a conserved phenomenon regulating tissue integrity by assessing the fitness of cells relative to their neighbors and eliminating suboptimal cells.Somatic clones of amyloid-beta 42 that juxtapose genetically distinct neuronal cell populations show promise for studying neurodegeneration.Generating genetic mosaics with labeled clones of amyloid-beta 42-or tau-expressing and wild-type neurons will allow us to understand how short-range signaling alterations trigger cell death in neurons and thereby contribute to the progression of Alzheimer’s disease.These approaches have the potential to uncover biomarkers for early Alzheimer’s disease detection and new therapeutic targets for intervention.展开更多
基金Supportod ty the State Key Basic Research Program Grant G1998051211 the Fund for Leading Specialty of Shanghai Metropolitan Bureau of Public Health.
文摘AIM: To establish clone cells with different metastatic potential for the study of metastasis-related mechanisms. METHODS: Cloning procedure was performed on parental hepatocellular carcinoma (HCC) cell line MHCC97, and biological characteristics of the target clones selected by in vivo screening were studied. RESULTS: Two clones with high (MHCC97-H) and low (MHCC97-L) metastatic potential were isolated from the parent cell line. Compared with MHCC97-L, MHCC97-H had smaller cell size (average cell diameter 43 microm vs 50 microm) and faster in vitro and in vivo growth rate (tumor cell doubling time was 34.2h vs 60.0h). The main ranges of chromosomes were 55-58 in MHCC97-H and 57-62 in MHCC97-L. Boyden chamber in vitro invasion assay demonstrated that the number of penetrating cells through the artificial basement membrane was (37.5 +/- 11.0) cells/field for MHCC97-H vs (17.7 +/- 6.3)/field for MHCC97-L. The proportions of cells in G0-G1 phase, S phase, and G2-M phase for MHCC97-H/MHCC97-L were 0.56/0.65, 0.28/0.25 and 0.16/0.10, respectively, as measured by flow cytometry. The serum AFP levels in nude mice 5wk after orthotopic implantation of tumor tissue were (246 +/- 66) microg.L(-1) for MHCC97-H and (91 +/- 66) microg.L(-1) for MHCC97-L. The pulmonary metastatic rate was 100% (10/10) vs 40% (4/10). CONCLUSION: Two clones of the same genetic background but with different biological behaviors were established, which could be valuable models for investigation on HCC metastasis.
基金supported by the National Natural Science Foundation of China(Grant No.39830280).
文摘Adult somatic cell nuclear transfer was con-ducted by using cultured ear fibroblast cells obtained from a Holstein female cow (GN) and a Galoway herd bull (GLV). The percentages of reconstructed eggs developed into blas-tocysts were similar in GN (23.98%, 123 of 513) and in GLV groups (29.55%, 138 of 467). However, the rate of recon-structed female (GN) embryos developed into term was higher than that of male (GLV) (8.02% and 1.82%, respec-tively). Three kinds of cows, Luxi Yellow cows, Holstein heifers and Holstein cows with normal reproductive records were used as recipients. When the reconstructed embryos from GN were transferred, there was no difference in the pregnancy rate among three kinds of recipients, but the abortion rate of Luxi Yellow cows was significantly higher (85.71%) than in the other two groups (14.29% and 0%, respectively; P < 0.05). And the percentages of newborn calves in transferred embryos were significantly different between Luxi Yellow cows and Holstein breed (1.54%, 10.39% and 20.0%, respectively, P < 0.05). However, when reconstructed embryos from GLV were transferred, there was no difference among three kinds of recipients in the pregnancy rate, the abortion rate and the delivery rate.
基金the National Basic Research Program of China(Grant No.G1999054301)the High-tech Research Program(863 Program)of the Ministry of Science and Technology of China(Grant No.2002AA216161)+4 种基金the National Natural Science Foundation of China(Grant No.39970363)the Emphasis Foundation of Ministry of Education of China(2003-2005)the Emphasis Foundation of Shaanxi Province(Grant No.2002K01-G3)the Natural Science Foundation of Guangdong Province(Grant No.04011471)the Science Foundation of Educational office of Guangdong Province(Grant No.2003-1009)
文摘The major obstacle in using pancreatic islet transplantation to cure type I and some type II diabetes is the shortage of the donors. One of ways to overcome such obstacle is to isolate and clone pancreatic stem cells as "seed cells" and induce their differentiation into functional islets as an abundant trans-plantation source. In this study, a monoclonal human pancreatic stem cell (mhPSC) line was obtained from abortive fetal pancreatic tissues. Pancreatic tissues were taken from abortive fetus by sterile procedures, and digested into single cells and cell clusters with 0.1% type IV collagenase. Cultured in modified glucose-low DMEM with 10% fetal bovine serum (FBS), these single cells and cell clusters adhered to culture dishes, and then primary epidermal-like pancreatic stem cells started to clone. After digesting with 0.25% trypsin and 0.04% EDTA, fibroblasts and other cells were gradually eliminated and epithelioid pancreatic stem cells were gradually purified during generations. Using clone-ring selection, the mhPSCs were obtained. After addition of 10 ng/mL epidermal growth factor (EGF) in cell culture medium, the mhPSCs quickly grew and formed a gravelstone-like monolayer. Continuously proliferated, a mhPSC line, which was derived from a male abortive fetus of 4 months old, has been passed through 50 generations. More than 1×109 mhPSCs were cryo-preserved in liquid nitrogen. Karyotype analysis showed that the chromosome set of the mhPSC line was normal diploid. Immunocytochemistry results demonstrated that the mhPSC line was positive for the pdx1, glucagon, nestin and CK19, and negative for the insulin, CD34, CD44 and CD45 protein expression. RT-PCR revealed further that the mhPSCs expressed transcription factors of the pdx1, glucagon, nestin and CK19. Also, in vitro induced with β-mercaptoethanol, the mhPSCs differentiated into nerve cells that expressed the NF protein. Induced with nicotinamide, the mhPSCs differentiated into functional islet-like clusters, as identified by di-thizone staining, which e
基金Supported by Foundation of Qingdao Postdoctoral Innovation Project,No.QDBSH20230101019Funded State Key Laboratory of Marine Food Processing&Safety Control,Qingdao,No.SKL2023M05.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a primary contributor to cancer-related mortality on a global scale.However,the underlying molecular mechanisms are still poorly understood.Long noncoding RNAs are emerging markers for HCC diagnosis,prognosis,and therapeutic target.No study of LINC01767 in HCC was published.AIM To conduct a multi-omics analysis to explore the roles of LINC01767 in HCC for the first time.METHODS DESeq2 Package was used to analyze different gene expressions.Receiver operating characteristic curves assessed the diagnostic performance.Kaplan-Meier univariate and Cox multivariate analyses were used to perform survival analysis.The least absolute shrinkage and selection operator(LASSO)-Cox was used to identify the prediction model.Subsequent to the validation of LINC01767 expression in HCC fresh frozen tissues through quantitative real time polymerase chain reaction,next generation sequencing was performed following LINC01767 over expression(GSE243371),and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes/Gene Set Enrichment Analysis/ingenuity pathway analysis was carried out.In vitro experiment in Huh7 cell was carried out.RESULTS LINC01767 was down-regulated in HCC with a log fold change=1.575 and was positively correlated with the cancer stemness.LINC01767 was a good diagnostic marker with area under the curve(AUC)[0.801,95% confidence interval(CI):0.751-0.852,P=0.0106]and an independent predictor for overall survival(OS)with hazard ratio=1.899(95%CI:1.01-3.58,P=0.048).LINC01767 nomogram model showed a satisfied performance.The top-ranked regulatory network analysis of LINC01767 showed the regulation of genes participating various pathways.LASSO regression identified the 9-genes model showing a more satisfied performance than 5-genes model to predict the OS with AUC>0.75.LINC01767 was down-expressed obviously in tumor than para-tumor tissues in our cohort as well as in cancer cell line;the over expression of LINC01767 inhibit cell proliferation and clone formation of Huh7 in vitro.CONCL
基金supported by 1RO1EY032959-01,NIH1R15GM124654-01 from NIHSchuellein Chair Endowment Fund and STEM Catalyst Grant and start-up support from the University of Dayton(to AS,MKS is Co-PI on NIH RO1 and Co-I on NIH R15)。
文摘The pathology of Alzheimer’s disease involves a long preclinical period,where the characteristic clinical symptoms of the changes in the brain are undetectable.During the preclinical period,homeostatic mechanisms may help prevent widespread cell death.Evidence has pointed towards selective cell death of diseased neurons playing a potentially protective role.As the disease progresses,dysregulation of signaling pathways that govern cell death contributes to neurodegeneration.Aberrant activation of the c-Jun N-terminal kinase pathway has been established in human and animal models of Alzheimer’s disease caused by amyloid-beta 42-or tau-mediated neurodegeneration.Clonal mosaic studies in Drosophila that examine amyloid-beta 42 in a subset of neurons suggest complex interplay between amyloid-beta 42-expressing and wild-type cells.This review examines the role of c-Jun N-terminal kinase signaling in the context of cell competition and short-range signaling interactions between amyloid-beta 42-expressing and wild-type neurons.Cell competition is a conserved phenomenon regulating tissue integrity by assessing the fitness of cells relative to their neighbors and eliminating suboptimal cells.Somatic clones of amyloid-beta 42 that juxtapose genetically distinct neuronal cell populations show promise for studying neurodegeneration.Generating genetic mosaics with labeled clones of amyloid-beta 42-or tau-expressing and wild-type neurons will allow us to understand how short-range signaling alterations trigger cell death in neurons and thereby contribute to the progression of Alzheimer’s disease.These approaches have the potential to uncover biomarkers for early Alzheimer’s disease detection and new therapeutic targets for intervention.