The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ion...The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical- integrated photonic devices at near-infrared band.展开更多
[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36...[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.展开更多
ZIRLO alloy specimens were implanted with carbon ions with fluence range from 1×10 16 to 1×10 18ions·cm -2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 ℃. The s...ZIRLO alloy specimens were implanted with carbon ions with fluence range from 1×10 16 to 1×10 18ions·cm -2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 ℃. The surfaces of the implanted samples were then analyzed and the TRIM 96 computer code was used to simulate the depth distribution of carbon. The valences of elements in the implanted surface of ZIRLO alloy were analyzed by X-ray photoemission spectroscopy (XPS); and then the depth distributions of the elements on the surface of the samples were obtained by Auger electron spectroscopy (AES). Scanning electron microscopy (SEM) was used to examine the micro-morphology of implanted samples. Glancing angle X-ray diffraction (GAXRD) at 0.30 incident angles was employed to examine the phase transformations of implanted samples. It shows that the as-received ZIRLO alloy is mainly composed of hexagonal alpha zirconium, as for implanted samples, there appeared hexagonal zirconia (H-ZrO_ 0.35) and sigma zirconium carbide (δ-Zr_3C_2), and the δ-Zr_3C_2 increased when increasing the fluence. When the fluence reached 1×10 18 ions·cm -2, the concentration of δ-Zr_3C_2 is the maximum in all the samples. The micro-morphology of implanted samples are similar, there are many pits with diameters ranging from 1 to 3 μm on the implanted surfaces.展开更多
TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were...TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant infl uence on film's micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×10^17 ion/cm^2, which gives rise to a 150% increased photocurrent and degradation rate.展开更多
文摘The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical- integrated photonic devices at near-infrared band.
基金Supported by the Fund from Key Laboratory of Beam Technology and Material Modification of Ministry of Education(201123)
文摘[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.
文摘ZIRLO alloy specimens were implanted with carbon ions with fluence range from 1×10 16 to 1×10 18ions·cm -2, using a MEVVA source at an extraction voltage of 40 kV at maximum temperature of 380 ℃. The surfaces of the implanted samples were then analyzed and the TRIM 96 computer code was used to simulate the depth distribution of carbon. The valences of elements in the implanted surface of ZIRLO alloy were analyzed by X-ray photoemission spectroscopy (XPS); and then the depth distributions of the elements on the surface of the samples were obtained by Auger electron spectroscopy (AES). Scanning electron microscopy (SEM) was used to examine the micro-morphology of implanted samples. Glancing angle X-ray diffraction (GAXRD) at 0.30 incident angles was employed to examine the phase transformations of implanted samples. It shows that the as-received ZIRLO alloy is mainly composed of hexagonal alpha zirconium, as for implanted samples, there appeared hexagonal zirconia (H-ZrO_ 0.35) and sigma zirconium carbide (δ-Zr_3C_2), and the δ-Zr_3C_2 increased when increasing the fluence. When the fluence reached 1×10 18 ions·cm -2, the concentration of δ-Zr_3C_2 is the maximum in all the samples. The micro-morphology of implanted samples are similar, there are many pits with diameters ranging from 1 to 3 μm on the implanted surfaces.
基金Funded by the National Basic Research Program of China(No.2012CB934303)the Joint Fund Launched by the Department of Science and Technology of Guizhou Province & Guizhou Minzu University(LKM[2012]24)the Guiyang Science&Technology Department([2012205]6-12)
文摘TiO2 thin films were fabricated by RF magnetron sputtering on titanium substrates and then implanted with different amounts of carbon. The microstructure, valence states and optical characteristics of each sample were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflection spectroscopy. Photoelectric property was evaluated under visible light using a xenon lamp as illuminant. The experimental results indicate that the implanting carbon concentration has a significant infl uence on film's micro structure and element valence states. The dominant valence states of carbon vary as carbon content increases. Carbon ion implantation remarkably enhances the current density and photocatalytic capability of TiO2 thin films. The optimized implanting content is 9.83×10^17 ion/cm^2, which gives rise to a 150% increased photocurrent and degradation rate.