摘要
The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical- integrated photonic devices at near-infrared band.
The Er3+/yb3+ co-doped phosphate (EYDP) glass waveguides operated at 1539 nm have been manufactured by using the implantation technique of carbon ions under the condition of 6.0 MeV energy and 5.0 × 10^13 ions/cm2 fluence in this work. The ion implantation process was computed by means of the stopping and range of ions in matter. The dark-mode spectrum at 1539 nm of the waveguide was recorded by the method of the prism coupling measurement. The microscopic image of the fabricated structure was photographed by an optical microscope. It is the first step for the application of the waveguides on the base of EYDP glasses in optical- integrated photonic devices at near-infrared band.