利用大肠杆菌混菌发酵生物合成咖啡醇糖苷。通过在酪氨酸高产大肠杆菌BTAL中表达异源基因酪氨酸解氨酶(tyrosine ammonia-lyase from Rhodotorula glutinis,RgTAL),对羟基肉桂酰辅酶A连接酶(hydroxycinnamate:CoA ligase from Petroseli...利用大肠杆菌混菌发酵生物合成咖啡醇糖苷。通过在酪氨酸高产大肠杆菌BTAL中表达异源基因酪氨酸解氨酶(tyrosine ammonia-lyase from Rhodotorula glutinis,RgTAL),对羟基肉桂酰辅酶A连接酶(hydroxycinnamate:CoA ligase from Petroselinum crispum,Pc4CL)和肉桂酰辅酶A还原酶(cinnamyl-CoA reductase from Arabidopsis thaliana,AtCCR),与大肠杆菌BL21(DE3)中表达对羟基苯乙酸3-羟化酶HpaBC和糖基转移酶(UGT73C5 from A.thaliana,AtUGT73C5)混合培养发酵生产了3种咖啡醇葡萄糖苷,其中2种为非天然化合物。优化共培养比例至3∶1,咖啡醇-4-O-葡萄糖苷的最高产量达到(141.63±3.42)mg/L。这是首次微生物异源合成咖啡醇糖苷的报道,该工作扩大了咖啡醇糖苷的结构多样性,为后续的构效分析提供了新的候选化合物,有望得到具有较好生物活性的咖啡醇糖苷化合物。展开更多
文摘利用大肠杆菌混菌发酵生物合成咖啡醇糖苷。通过在酪氨酸高产大肠杆菌BTAL中表达异源基因酪氨酸解氨酶(tyrosine ammonia-lyase from Rhodotorula glutinis,RgTAL),对羟基肉桂酰辅酶A连接酶(hydroxycinnamate:CoA ligase from Petroselinum crispum,Pc4CL)和肉桂酰辅酶A还原酶(cinnamyl-CoA reductase from Arabidopsis thaliana,AtCCR),与大肠杆菌BL21(DE3)中表达对羟基苯乙酸3-羟化酶HpaBC和糖基转移酶(UGT73C5 from A.thaliana,AtUGT73C5)混合培养发酵生产了3种咖啡醇葡萄糖苷,其中2种为非天然化合物。优化共培养比例至3∶1,咖啡醇-4-O-葡萄糖苷的最高产量达到(141.63±3.42)mg/L。这是首次微生物异源合成咖啡醇糖苷的报道,该工作扩大了咖啡醇糖苷的结构多样性,为后续的构效分析提供了新的候选化合物,有望得到具有较好生物活性的咖啡醇糖苷化合物。