The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness....The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness. Ad-justing the bulldozing volume (depth) and/or changing the dragline bench height are proposed as means to ensure a smooth and economical mining operation. When the coal seam is getting thicker it is recommended to reduce the bull-dozing volume (depth) for a higher dragline efficiency. When the coal seam is getting thinner it is recommended to in-crease the bulldozing volume (depth) to ensure the dragline can work at the proper bench height.展开更多
A simulative analysis coupled with experiment on behaviors of a soil bed cut by a model bulldozer blade is carried out using the finite element/distinct element method(FE/DEM) facility built in the ELFEN package. Be...A simulative analysis coupled with experiment on behaviors of a soil bed cut by a model bulldozer blade is carried out using the finite element/distinct element method(FE/DEM) facility built in the ELFEN package. Before simulation, tensile/compression, triaxial compression and the soil specimens are examined through uniaxial direct shear tests to obtain model characteristics and relevant parameters, then soil cutting experiments are carried out via a mini-soil bin system with a soil bed of 60/120 mm in width and 10 mm in depth cut by a 1/9 scale model bulldozer blade moving with the velocity of 10 mm/s. The soil constitutive model includes the tensile elastic model for tensile breakage and the compressive elastoplastic relationship with Mohr-Coulomb criterion. The cutting length in simulation is set as 1/4 of that in the experiment divided into 1 869 triangular elements. The comparison between the simulated results and experimental ones shows that the used model is capable of analyzing soil dynamic behaviors qualitatively, and the predicted fracturing profiles in general conform to the experiment. Hence the feasibility for analyzing soil fracturing behaviors in tillage or other similar processes is validated.展开更多
针对当前推土机在作业过程中操作复杂、施工效果评估困难等问题,基于北斗实时动态差分定位(real time kinematic,RTK)技术和运动学方程,求得推土机实时位置;提出了以推土高程和设计平面的高程差作为平整施工质量评价的方法,可直观评价...针对当前推土机在作业过程中操作复杂、施工效果评估困难等问题,基于北斗实时动态差分定位(real time kinematic,RTK)技术和运动学方程,求得推土机实时位置;提出了以推土高程和设计平面的高程差作为平整施工质量评价的方法,可直观评价施工效果,研制了驾驶引导装置,可实时显示推土机状态与施工进度。工程应用表明,该装置达到了厘米级的定位精度,定位的绝对误差小于5 cm,满足推土机精准施工的需求;车载显示终端使用RS232通信可精确获取推土机坐标、速度、航向等自身状态参数和施工数据。在实际施工场景中,该系统可有效减少驾驶员返工次数、降低劳动强度,提高了施工效率,达到了辅助施工的目的。展开更多
基金Projects 50474069 supported by the National Natural Science Foundation of China2006BAB16B00 by the State Scientific and Technological Project of the 11th Five-Year Plan
文摘The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness. Ad-justing the bulldozing volume (depth) and/or changing the dragline bench height are proposed as means to ensure a smooth and economical mining operation. When the coal seam is getting thicker it is recommended to reduce the bull-dozing volume (depth) for a higher dragline efficiency. When the coal seam is getting thinner it is recommended to in-crease the bulldozing volume (depth) to ensure the dragline can work at the proper bench height.
基金This project is supported by National Natural Science Foundation of China (No. 10372113)Royal Society-NSFC China-UK Joint Project (No. 16468).
文摘A simulative analysis coupled with experiment on behaviors of a soil bed cut by a model bulldozer blade is carried out using the finite element/distinct element method(FE/DEM) facility built in the ELFEN package. Before simulation, tensile/compression, triaxial compression and the soil specimens are examined through uniaxial direct shear tests to obtain model characteristics and relevant parameters, then soil cutting experiments are carried out via a mini-soil bin system with a soil bed of 60/120 mm in width and 10 mm in depth cut by a 1/9 scale model bulldozer blade moving with the velocity of 10 mm/s. The soil constitutive model includes the tensile elastic model for tensile breakage and the compressive elastoplastic relationship with Mohr-Coulomb criterion. The cutting length in simulation is set as 1/4 of that in the experiment divided into 1 869 triangular elements. The comparison between the simulated results and experimental ones shows that the used model is capable of analyzing soil dynamic behaviors qualitatively, and the predicted fracturing profiles in general conform to the experiment. Hence the feasibility for analyzing soil fracturing behaviors in tillage or other similar processes is validated.
文摘针对当前推土机在作业过程中操作复杂、施工效果评估困难等问题,基于北斗实时动态差分定位(real time kinematic,RTK)技术和运动学方程,求得推土机实时位置;提出了以推土高程和设计平面的高程差作为平整施工质量评价的方法,可直观评价施工效果,研制了驾驶引导装置,可实时显示推土机状态与施工进度。工程应用表明,该装置达到了厘米级的定位精度,定位的绝对误差小于5 cm,满足推土机精准施工的需求;车载显示终端使用RS232通信可精确获取推土机坐标、速度、航向等自身状态参数和施工数据。在实际施工场景中,该系统可有效减少驾驶员返工次数、降低劳动强度,提高了施工效率,达到了辅助施工的目的。