在Q/GDW 1379.4-2013通信单元检验技术规范的要求下,为测试低压宽带电力线载波通信单元的工作频段、载波信号发射功率谱密度、抗衰减能力、抗噪声干扰和抗阻抗变化等基本通信性能,给电网公司建设宽带电力载波远程集抄系统提供数据参考...在Q/GDW 1379.4-2013通信单元检验技术规范的要求下,为测试低压宽带电力线载波通信单元的工作频段、载波信号发射功率谱密度、抗衰减能力、抗噪声干扰和抗阻抗变化等基本通信性能,给电网公司建设宽带电力载波远程集抄系统提供数据参考和方案依据。根据宽带电力线载波技术的特点搭建了点对点通信性能测试平台。该平台采用三级级联双SMA电源滤波组合,可有效隔离电网谐波、脉冲信号及电力线背景噪声对宽带载波通信单元性能的影响,使测试平台能够充分模拟低压电力线通道,还原现场集抄台区的运行状况,评估载波通信单元的实际可用性。试验数据证明:所建点对点通信性能测试平台试验环境纯净,对2MHz^30MHz通带内的信号衰减达93 d B,可确保宽带载波通信产品测试结果的稳定可靠。展开更多
In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming sch...In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming scheme in time domain is proposed in this paper. The first step of this scheme is to delay the outputs of each element in the acoustic array by a tapped-delay-line (TDL) to accomplish the integer part of the time delay need to form a beam. Then, finite impulse response (FIR) digital filters are used to implement the fractional part of the time delay. The weighting coefficients for all array elements at different frequencies to realize the low sidelobe beams are also implemented with the FIR digital filters. Finally, the outputs of the digital filters are summed up to yield the time domain beam output. The design of low sidelobe beam pattern and that of the FIR digital filters are two crucial technical issues in this beamforming procedure. The low sidelobe beams of each sub-band are designed using the optimized beam synthesis approach based on the principle of MVDR beamforming. An improved adaptive approach are used for the design of FIR digital filters, and the design requirements of these filters were specified by the weights of low sidelobe beams of each sub-band over the broad frequency band. Results of computer simulation for a twelve-element arc array show that the beamforming scheme is very effective in forming low sidelobe broadband beam.展开更多
The design and the deposition of a rugate filter for broadband applications are discussed.The bandwidth is extended by increasing the rugate period continuously with depth.The width and the smoothness of the reflectio...The design and the deposition of a rugate filter for broadband applications are discussed.The bandwidth is extended by increasing the rugate period continuously with depth.The width and the smoothness of the reflection band with the distribution of the periods are investigated.The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces.The rapidly alternating deposition technology is used to fabricate a rugate filter sample.The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband.Based on the analysis of the cross-sectional scanning electron microscopic image of the sample,it is found that the transmission peak is most likely to be caused by the instability of the deposition rate.展开更多
文摘在Q/GDW 1379.4-2013通信单元检验技术规范的要求下,为测试低压宽带电力线载波通信单元的工作频段、载波信号发射功率谱密度、抗衰减能力、抗噪声干扰和抗阻抗变化等基本通信性能,给电网公司建设宽带电力载波远程集抄系统提供数据参考和方案依据。根据宽带电力线载波技术的特点搭建了点对点通信性能测试平台。该平台采用三级级联双SMA电源滤波组合,可有效隔离电网谐波、脉冲信号及电力线背景噪声对宽带载波通信单元性能的影响,使测试平台能够充分模拟低压电力线通道,还原现场集抄台区的运行状况,评估载波通信单元的实际可用性。试验数据证明:所建点对点通信性能测试平台试验环境纯净,对2MHz^30MHz通带内的信号衰减达93 d B,可确保宽带载波通信产品测试结果的稳定可靠。
文摘In modern active and passive sonar systems, broadband beamforming for acoustic arrays is widely used to suppress unwanted interference and to detect target signals of interest. A broadband low sidelobe beamforming scheme in time domain is proposed in this paper. The first step of this scheme is to delay the outputs of each element in the acoustic array by a tapped-delay-line (TDL) to accomplish the integer part of the time delay need to form a beam. Then, finite impulse response (FIR) digital filters are used to implement the fractional part of the time delay. The weighting coefficients for all array elements at different frequencies to realize the low sidelobe beams are also implemented with the FIR digital filters. Finally, the outputs of the digital filters are summed up to yield the time domain beam output. The design of low sidelobe beam pattern and that of the FIR digital filters are two crucial technical issues in this beamforming procedure. The low sidelobe beams of each sub-band are designed using the optimized beam synthesis approach based on the principle of MVDR beamforming. An improved adaptive approach are used for the design of FIR digital filters, and the design requirements of these filters were specified by the weights of low sidelobe beams of each sub-band over the broad frequency band. Results of computer simulation for a twelve-element arc array show that the beamforming scheme is very effective in forming low sidelobe broadband beam.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10704079)the NSAF Joint Fund,China(Grant No. 10976030)
文摘The design and the deposition of a rugate filter for broadband applications are discussed.The bandwidth is extended by increasing the rugate period continuously with depth.The width and the smoothness of the reflection band with the distribution of the periods are investigated.The improvement of the steepness of the stopband edges and the suppression of the side lobes in the transmission zone are realized by adding two apodized rugate structures with fixed periods at the external broadband rugate filter interfaces.The rapidly alternating deposition technology is used to fabricate a rugate filter sample.The measured transmission spectrum with a reflection bandwidth of approximately 505 nm is close to that of the designed broadband rugate filter except a transmittance peak in the stopband.Based on the analysis of the cross-sectional scanning electron microscopic image of the sample,it is found that the transmission peak is most likely to be caused by the instability of the deposition rate.