Angle deviations between the two substrates during transient liquid phase (TLP) bonding single crystal superalloys cannot be avoided. In the present work, specimens have been prepared to investigate the influences o...Angle deviations between the two substrates during transient liquid phase (TLP) bonding single crystal superalloys cannot be avoided. In the present work, specimens have been prepared to investigate the influences of the various substrate orientations. It is found that the width of the non-isothermal solidification zone (NSZ) is linear with the square root of the isothermal solidification time. This suggests that the isothermal solidification process is B-diffusion controlled in different substrate orientation deviations. And also the width of the NSZ increases with increasing angle deviation, indicating that the isothermal solidification time needed in the TLP bonding increases with increasing orientation deviation between the two substrates.展开更多
基金financially supported by the National Basic Research Program (973 Program) of China under Grant Nos. 2010CB631200 and 2010CB631206the National Natural Science Foundation of China (NSFC) under Grant Nos. 50971124, 50904059, 51071165 and 51204156
文摘Angle deviations between the two substrates during transient liquid phase (TLP) bonding single crystal superalloys cannot be avoided. In the present work, specimens have been prepared to investigate the influences of the various substrate orientations. It is found that the width of the non-isothermal solidification zone (NSZ) is linear with the square root of the isothermal solidification time. This suggests that the isothermal solidification process is B-diffusion controlled in different substrate orientation deviations. And also the width of the NSZ increases with increasing angle deviation, indicating that the isothermal solidification time needed in the TLP bonding increases with increasing orientation deviation between the two substrates.