In recent years, a new 2D-layered material—black phosphorus(BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic stru...In recent years, a new 2D-layered material—black phosphorus(BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic structure. With the development of the synthesis and modification methods of BP, its extensive applications, e.g., transistors, batteries and optoelectronics have emerged. In order to explore its full potential, research into the tribological properties of BP 2D-layered materials such as lubrication additives and fillers in self-lubricating composite materials would be not only of high scientific value but also of practical significance. In this work, recent advances on the friction and lubrication properties of BP nanosheets made by our group, including the micro-friction properties, the lubrication properties of BP nanosheets as water-based and oil-based lubrication additives, and the friction and wear of BP/PVDF composites will be presented. Finally, the future challenges and opportunities in the use of BP materials as lubricants will be discussed.展开更多
We review lattice vibrational modes in atomically thin two-dimensional (2D) layered materials, focusing on 2D materials beyond graphene, such as group VI transition metal dichalcogenides, topological insulator bismu...We review lattice vibrational modes in atomically thin two-dimensional (2D) layered materials, focusing on 2D materials beyond graphene, such as group VI transition metal dichalcogenides, topological insulator bismuth chalcogenides, and black phosphorus. Although the composition and structure of those materials are remarkably different, they share a common and important feature, i.e., their bulk crystals are stacked via van der Waals interactions between "layers", while each layer is comprised of one or more atomic planes. First, we review the background of some 2D materials (MX2, M = Mo, W; X = S, Se, Te. Bi2X3, X = Se, Te. Black phosphorus), including crystalline structures and stacking order. We then review the studies on vibrational modes of layered materials and nanostructures probed by the powerful yet nondestructive Raman spectroscopy technique. Based on studies conducted before 2010, recent investigations using more advanced techniques have pushed the studies of phonon modes in 2D layered materials to the atomically thin regime, down to monolayers. We will classify the recently reported general features into the following categories: phonon confinement effects and electron-phonon coupling, anomalous shifts in high-frequency intralayer vibrational modes and surface effects, reduced dimensionality and lower symmetry, the linear chain model and the substrate effect, stacking orders and interlayer shear modes, polarization dependence, and the resonance effect. Within the seven categories, both intralayer and interlayer vibrational modes will be discussed. The comparison between different materials will be provided as well.展开更多
黑磷是一种具有高的载流子迁移率、高的通断比,带隙为0.3~2 e V的二维材料,对中红外、近红外新型光电器件的开发具有十分重要的意义.本文利用高能球磨法和化学气相转移法成功将红磷转化为黑磷,并进行液相剥离,得到了一层或两层的磷烯.利...黑磷是一种具有高的载流子迁移率、高的通断比,带隙为0.3~2 e V的二维材料,对中红外、近红外新型光电器件的开发具有十分重要的意义.本文利用高能球磨法和化学气相转移法成功将红磷转化为黑磷,并进行液相剥离,得到了一层或两层的磷烯.利用X射线衍射仪、透射电子显微镜、差示扫描量热仪对其微观结构和稳定性进行了研究,并表征了化学气相转移法制备黑磷的电学性能.结果表明:高能球磨法制备的黑磷尺寸小、结晶度低,样品中有红磷存在,稳定性差.化学气相转移法制备的黑磷尺寸大、结晶度好、纯度高,且较为稳定.此方法制备的黑磷可成为剥离磷烯的优异原料,进而应用于先进微电子器件.展开更多
Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exh...Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in micro- sized all-optical and optoelectronic devices.展开更多
基金support of the National Natural Science Foundation of China(Grant Nos.51527901,51335005,51475256,and 51605249)
文摘In recent years, a new 2D-layered material—black phosphorus(BP)—has been a rising star after the era of graphene owing to its high charge carrier mobility, tunable direct bandgap and unique in-plane anisotropic structure. With the development of the synthesis and modification methods of BP, its extensive applications, e.g., transistors, batteries and optoelectronics have emerged. In order to explore its full potential, research into the tribological properties of BP 2D-layered materials such as lubrication additives and fillers in self-lubricating composite materials would be not only of high scientific value but also of practical significance. In this work, recent advances on the friction and lubrication properties of BP nanosheets made by our group, including the micro-friction properties, the lubrication properties of BP nanosheets as water-based and oil-based lubrication additives, and the friction and wear of BP/PVDF composites will be presented. Finally, the future challenges and opportunities in the use of BP materials as lubricants will be discussed.
基金Q. H. X. gratefully thanks Singapore National Research Foundation via a Fellowship grant (No. NRF-RF2009-06) and an Investigatorship grant (No. NRF-NRFI2015-03), Ministry of Education via a tier2 grant (No. MOE2012-T2-2-086) and a tier1 grant (No. 2013-T1-002-232). S. Y. Q. and X. Luo gratefully acknowledge the Singapore National Research Foun- dation (NRF) for funding under the NRF Fellowship (No. NRF-NRFF2013-07). Z. J. gratefully thanks National Natural Science Foundation of China (Nos. 11574305 and 51527901) and financial support from the National 1000 Talent Plan of China via a Young Project. The computations were performed on the cluster of NUS Graphene Research Centre. S. Y. Q. and X. Luo acknowledge the National Research Foundation, Prime Minister's Office, Singapore, under its Medium Sized Centre Programme.
文摘We review lattice vibrational modes in atomically thin two-dimensional (2D) layered materials, focusing on 2D materials beyond graphene, such as group VI transition metal dichalcogenides, topological insulator bismuth chalcogenides, and black phosphorus. Although the composition and structure of those materials are remarkably different, they share a common and important feature, i.e., their bulk crystals are stacked via van der Waals interactions between "layers", while each layer is comprised of one or more atomic planes. First, we review the background of some 2D materials (MX2, M = Mo, W; X = S, Se, Te. Bi2X3, X = Se, Te. Black phosphorus), including crystalline structures and stacking order. We then review the studies on vibrational modes of layered materials and nanostructures probed by the powerful yet nondestructive Raman spectroscopy technique. Based on studies conducted before 2010, recent investigations using more advanced techniques have pushed the studies of phonon modes in 2D layered materials to the atomically thin regime, down to monolayers. We will classify the recently reported general features into the following categories: phonon confinement effects and electron-phonon coupling, anomalous shifts in high-frequency intralayer vibrational modes and surface effects, reduced dimensionality and lower symmetry, the linear chain model and the substrate effect, stacking orders and interlayer shear modes, polarization dependence, and the resonance effect. Within the seven categories, both intralayer and interlayer vibrational modes will be discussed. The comparison between different materials will be provided as well.
文摘黑磷是一种具有高的载流子迁移率、高的通断比,带隙为0.3~2 e V的二维材料,对中红外、近红外新型光电器件的开发具有十分重要的意义.本文利用高能球磨法和化学气相转移法成功将红磷转化为黑磷,并进行液相剥离,得到了一层或两层的磷烯.利用X射线衍射仪、透射电子显微镜、差示扫描量热仪对其微观结构和稳定性进行了研究,并表征了化学气相转移法制备黑磷的电学性能.结果表明:高能球磨法制备的黑磷尺寸小、结晶度低,样品中有红磷存在,稳定性差.化学气相转移法制备的黑磷尺寸大、结晶度好、纯度高,且较为稳定.此方法制备的黑磷可成为剥离磷烯的优异原料,进而应用于先进微电子器件.
文摘Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in micro- sized all-optical and optoelectronic devices.