针对鸟群优化算法迭代初期种群多样性不足、迭代后期收敛速度慢、易陷入局部最优解等问题,提出一种融合柯西变异的鸟群与算术混合优化算法(hybrid algorithm of bird swarm algorithm and arithmetic optimization algorithm based on C...针对鸟群优化算法迭代初期种群多样性不足、迭代后期收敛速度慢、易陷入局部最优解等问题,提出一种融合柯西变异的鸟群与算术混合优化算法(hybrid algorithm of bird swarm algorithm and arithmetic optimization algorithm based on Cauchy mutation,HBSAAOA)。利用算术优化算法中乘除算子的高分布性对BSA中生产者的位置进行更新,以提高种群多样性,增强全局搜索能力。引入随机搜索策略和柯西变异策略来生成候选解,对后期局部开发阶段进行扰动,以增强算法跳出局部最优解的能力并提高收敛速度。利用贪婪策略对最优个体进行选择并替代较差的个体,从而提高解的质量。通过对23个经典测试函数以及部分CEC2014基准函数进行仿真实验,并将HBSAAOA应用到两个工程应用问题上,结果表明改进策略有效,改进算法的收敛速度更快、寻优精度更高,并且鲁棒性更好。展开更多
文摘针对鸟群优化算法迭代初期种群多样性不足、迭代后期收敛速度慢、易陷入局部最优解等问题,提出一种融合柯西变异的鸟群与算术混合优化算法(hybrid algorithm of bird swarm algorithm and arithmetic optimization algorithm based on Cauchy mutation,HBSAAOA)。利用算术优化算法中乘除算子的高分布性对BSA中生产者的位置进行更新,以提高种群多样性,增强全局搜索能力。引入随机搜索策略和柯西变异策略来生成候选解,对后期局部开发阶段进行扰动,以增强算法跳出局部最优解的能力并提高收敛速度。利用贪婪策略对最优个体进行选择并替代较差的个体,从而提高解的质量。通过对23个经典测试函数以及部分CEC2014基准函数进行仿真实验,并将HBSAAOA应用到两个工程应用问题上,结果表明改进策略有效,改进算法的收敛速度更快、寻优精度更高,并且鲁棒性更好。