In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo...In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.展开更多
This paper proposes a novel concept of virus-like swimming robot in the range of nano to micro scales for biomedical applications. Viruses are submicroscopic, intracellular parasites that consist of nucleic acid genom...This paper proposes a novel concept of virus-like swimming robot in the range of nano to micro scales for biomedical applications. Viruses are submicroscopic, intracellular parasites that consist of nucleic acid genome and protein capsid. Their shapes help them to move within the infected host organisms and attach to host cells. In this paper, main geometrical features of the viral structure are utilized for conceptual design of the virus-inspired swimming robot and resultant thorny spherical shaped body is equipped with a new inclined and concentric multi-flagella propulsion system for operation in low Reynolds number fluid flow environment. In off-propulsion situation a theoretical formula is derived for thrust value estimation. On the other hand, to investigate the robot behavior in the fluid media in on-propulsion condition, flow field around the robot is simulated using a numerical strategy consisting of surface methods of regularized Stokeslet and Rotlet theory. For propulsion control of the robot a multilayer artificial neural network is designed and employed then flow field of the robot wake is analyzed using Lagrangian Coherent Structure (LCS) concept. Furthermore, potential characteristics and specific features of this kind of miniature robots are discussed as well as its application. The results indicate the capability of the miniature robot to perform complex missions in low Reynolds number fluid flow environment especially bodily fluid systems including lymphatic, urinary and cerebrospinal fluid (CSF) systems.展开更多
视觉导航技术是保证机器人自主移动的关键技术之一。为了从整体上把握当前国际上最新的视觉导航研究动态,全面评述了仿生机器人视觉导航技术的研究进展,重点分析了视觉SLAM(Simultaneous Local-ization and Mapping)、闭环探测、视觉返...视觉导航技术是保证机器人自主移动的关键技术之一。为了从整体上把握当前国际上最新的视觉导航研究动态,全面评述了仿生机器人视觉导航技术的研究进展,重点分析了视觉SLAM(Simultaneous Local-ization and Mapping)、闭环探测、视觉返家三个关键问题的研究现状及存在的问题。提出了一个新的视觉SLAM算法框架,给出了待解决的关键理论问题,并对视觉导航技术发展的难点及未来趋势进行了总结。展开更多
文摘In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.
文摘This paper proposes a novel concept of virus-like swimming robot in the range of nano to micro scales for biomedical applications. Viruses are submicroscopic, intracellular parasites that consist of nucleic acid genome and protein capsid. Their shapes help them to move within the infected host organisms and attach to host cells. In this paper, main geometrical features of the viral structure are utilized for conceptual design of the virus-inspired swimming robot and resultant thorny spherical shaped body is equipped with a new inclined and concentric multi-flagella propulsion system for operation in low Reynolds number fluid flow environment. In off-propulsion situation a theoretical formula is derived for thrust value estimation. On the other hand, to investigate the robot behavior in the fluid media in on-propulsion condition, flow field around the robot is simulated using a numerical strategy consisting of surface methods of regularized Stokeslet and Rotlet theory. For propulsion control of the robot a multilayer artificial neural network is designed and employed then flow field of the robot wake is analyzed using Lagrangian Coherent Structure (LCS) concept. Furthermore, potential characteristics and specific features of this kind of miniature robots are discussed as well as its application. The results indicate the capability of the miniature robot to perform complex missions in low Reynolds number fluid flow environment especially bodily fluid systems including lymphatic, urinary and cerebrospinal fluid (CSF) systems.
文摘视觉导航技术是保证机器人自主移动的关键技术之一。为了从整体上把握当前国际上最新的视觉导航研究动态,全面评述了仿生机器人视觉导航技术的研究进展,重点分析了视觉SLAM(Simultaneous Local-ization and Mapping)、闭环探测、视觉返家三个关键问题的研究现状及存在的问题。提出了一个新的视觉SLAM算法框架,给出了待解决的关键理论问题,并对视觉导航技术发展的难点及未来趋势进行了总结。