The use of solar energy to produce steam is an effective method to purify sewage or seawater. Herein, we deposited TiN nanoparticles(NPs) on a piece of carbonized wood as a new type of double layer material for solar ...The use of solar energy to produce steam is an effective method to purify sewage or seawater. Herein, we deposited TiN nanoparticles(NPs) on a piece of carbonized wood as a new type of double layer material for solar water evaporation. TiN NPs possess better stability, lower cost,lower toxicity and wider and stronger optical absorption than the previously reported photo-thermal conversion(PTC)materials, such as plasmonic metals, carbon-based materials and semiconductor nanomaterials. The amounts of TiN NPs and the thicknesses and types of the substrates have important influences on water evaporation rates and solar-vapor conversion efficiency. A solar-vapor conversion efficiency of 92.5%, the highest efficiency in the reported wood-based PTC materials, is obtained under 1-sun simulated solar irradiation.In addition, the TBCF hybrid materials(TiN NPs on biocarbon foam) exhibit good reusability.展开更多
Graphene-like N,S-codoped bio-carbon nanosheets(GNSCS) were prepared by a facile and environment-friendly NaCl non-aqueous ionic liquid route to house sulfur for lithium-sulfur battery. The natural nori powder was cal...Graphene-like N,S-codoped bio-carbon nanosheets(GNSCS) were prepared by a facile and environment-friendly NaCl non-aqueous ionic liquid route to house sulfur for lithium-sulfur battery. The natural nori powder was calcined at 900°C for 3 h under Ar, in which NaCl non-aqueous ionic liquid can exfoliate carbon aggregates into nanosheets. The structural characterization of GNSCS by a series of techniques demonstrates the graphene-like feature.When evaluated as the matrix for sulfur cathode, GNSCS/S exhibits more prominent cycling stability and rate capability.A discharge capacity of 548 mA h g-1 at a current density of 1.6 A g-1 after 400 cycles was delivered with a capacity fade rate of only 0.13% per cycle and an initial Coulombic efficiency(CE) as high as 99.7%. When increasing the areal sulfur loading up to 3 mg cm-2, the discharge capacity can still be retained at 647 mA h g-1 after more than 100 cycles with a low capacity degradation of only ~0.30% per cycle. The features of N/S dual-doping and the graphene-like structure are propitious to the electron transportation, lithium-ion diffusion and more active sites for chemically adsorbing polysulfides. It is anticipated that other functional biochar carbon can also be attained via the low-cost, sustainable and green method.展开更多
文摘The use of solar energy to produce steam is an effective method to purify sewage or seawater. Herein, we deposited TiN nanoparticles(NPs) on a piece of carbonized wood as a new type of double layer material for solar water evaporation. TiN NPs possess better stability, lower cost,lower toxicity and wider and stronger optical absorption than the previously reported photo-thermal conversion(PTC)materials, such as plasmonic metals, carbon-based materials and semiconductor nanomaterials. The amounts of TiN NPs and the thicknesses and types of the substrates have important influences on water evaporation rates and solar-vapor conversion efficiency. A solar-vapor conversion efficiency of 92.5%, the highest efficiency in the reported wood-based PTC materials, is obtained under 1-sun simulated solar irradiation.In addition, the TBCF hybrid materials(TiN NPs on biocarbon foam) exhibit good reusability.
基金the financial supports provided by the National Natural Science Foundation of China (21601108 and U1764258)Young Scholars Program of Shandong University (2017WLJH15)+1 种基金the Fundamental Research Funds of Shandong University (2016JC033 and 2016GN010)the Taishan Scholar Project of Shandong Province (ts201511004)
文摘Graphene-like N,S-codoped bio-carbon nanosheets(GNSCS) were prepared by a facile and environment-friendly NaCl non-aqueous ionic liquid route to house sulfur for lithium-sulfur battery. The natural nori powder was calcined at 900°C for 3 h under Ar, in which NaCl non-aqueous ionic liquid can exfoliate carbon aggregates into nanosheets. The structural characterization of GNSCS by a series of techniques demonstrates the graphene-like feature.When evaluated as the matrix for sulfur cathode, GNSCS/S exhibits more prominent cycling stability and rate capability.A discharge capacity of 548 mA h g-1 at a current density of 1.6 A g-1 after 400 cycles was delivered with a capacity fade rate of only 0.13% per cycle and an initial Coulombic efficiency(CE) as high as 99.7%. When increasing the areal sulfur loading up to 3 mg cm-2, the discharge capacity can still be retained at 647 mA h g-1 after more than 100 cycles with a low capacity degradation of only ~0.30% per cycle. The features of N/S dual-doping and the graphene-like structure are propitious to the electron transportation, lithium-ion diffusion and more active sites for chemically adsorbing polysulfides. It is anticipated that other functional biochar carbon can also be attained via the low-cost, sustainable and green method.