In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the tempor...In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach.展开更多
Buildings have a significant impact on global sustainability.During the past decades,a wide variety of studies have been conducted throughout the building lifecycle for improving the building performance.Data-driven a...Buildings have a significant impact on global sustainability.During the past decades,a wide variety of studies have been conducted throughout the building lifecycle for improving the building performance.Data-driven approach has been widely adopted owing to less detailed building information required and high computational efficiency for online applications.Recent advances in information technologies and data science have enabled convenient access,storage,and analysis of massive on-site measurements,bringing about a new big-data-driven research paradigm.This paper presents a critical review of data-driven methods,particularly those methods based on larger datasets,for building energy modeling and their practical applications for improving building performances.This paper is organized based on the four essential phases of big-data-driven modeling,i.e.,data preprocessing,model development,knowledge post-processing,and practical applications throughout the building lifecycle.Typical data analysis and application methods have been summarized and compared at each stage,based upon which in-depth discussions and future research directions have been presented.This review demonstrates that the insights obtained from big building data can be extremely helpful for enriching the existing knowledge repository regarding building energy modeling.Furthermore,considering the ever-increasing development of smart buildings and IoT-driven smart cities,the big data-driven research paradigm will become an essential supplement to existing scientific research methods in the building sector.展开更多
基金Project(2014BAG01B0403)supported by the National High-Tech Research and Development Program of China
文摘In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach.
基金The authors gratefully acknowledge the support of this research by the Research Grant Council of Hong Kong SAR(152075/19E)the National Natural Science Foundation of China(No.51908365)the National Natural Science Foundation of China(No.51778321).
文摘Buildings have a significant impact on global sustainability.During the past decades,a wide variety of studies have been conducted throughout the building lifecycle for improving the building performance.Data-driven approach has been widely adopted owing to less detailed building information required and high computational efficiency for online applications.Recent advances in information technologies and data science have enabled convenient access,storage,and analysis of massive on-site measurements,bringing about a new big-data-driven research paradigm.This paper presents a critical review of data-driven methods,particularly those methods based on larger datasets,for building energy modeling and their practical applications for improving building performances.This paper is organized based on the four essential phases of big-data-driven modeling,i.e.,data preprocessing,model development,knowledge post-processing,and practical applications throughout the building lifecycle.Typical data analysis and application methods have been summarized and compared at each stage,based upon which in-depth discussions and future research directions have been presented.This review demonstrates that the insights obtained from big building data can be extremely helpful for enriching the existing knowledge repository regarding building energy modeling.Furthermore,considering the ever-increasing development of smart buildings and IoT-driven smart cities,the big data-driven research paradigm will become an essential supplement to existing scientific research methods in the building sector.