Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder...Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.展开更多
A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction ...A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.展开更多
文摘Effect of different dopants and various dopants quantity at different annealing temperatures on microstructure of tantalum wire, bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering were investigated through observation of microstructure and testing of bending of tantalum wire after sintering and bending after pressing into tantalum powder and sintering. The results show that the recrystallization temperature of tantalum wire increases and the grain of microstructure can be reduced with the increase of dopants quantity. At the same time, the effect of dopant Ce on reduction of the grain is more obvious than that of dopant Ge. The bending time of tantalum wire after sintering increases with the increase of dopant Ge or Ce quantity. Under the same condition, the bending time of tantalum wire after pressing into tantalum powder and sintering worsens with the increase of oxygen content in tantalum powder. The bending time of tantalum wire doped with Ge and Ce after pressing into tantalum powder and sintering is better than that of tantalum wire doped with Ge, while that of tantalum wire doped with Ge is better than that of pure one when oxygen content in tantalum powder is not too high.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20160557, and the General Program for Colleges and Universities in Jiangsu Province under Grant No. 16KJD570001
文摘A helical wire is a critical component of an unbounded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.