Device miniaturization is an emerging advanced technology in the 21 st century. The miniaturiza- tion of devices in different fields requires production of micro- and nano-scale components. The features of these compo...Device miniaturization is an emerging advanced technology in the 21 st century. The miniaturiza- tion of devices in different fields requires production of micro- and nano-scale components. The features of these components range from the sub-micron to a few hundred microns with high tolerance to many engineering materi- als. These fields mainly include optics, electronics, medicine, bio-technology, communications, and avionics. This paper reviewed the recent advances in micro- and nano-machining technologies, including micro-cutting, micro-electrical-discharge machining, laser micro-machin- ing, and focused ion beam machining. The four machining technologies were also compared in terms of machining efficiency, workpiece materials being machined, minimum feature size, maximum aspect ratio, and surface finish.展开更多
In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gra...In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.展开更多
Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabric...Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al_(2)O_(3) gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.展开更多
The combined use of focused ion beam(FIB)milling and field-emission scanning electron microscopy inspection(FESEM)is a unique and successful approach for assessment of near-surface phenomena at specific and selected l...The combined use of focused ion beam(FIB)milling and field-emission scanning electron microscopy inspection(FESEM)is a unique and successful approach for assessment of near-surface phenomena at specific and selected locations.In this study,a FIB/FESEM dual-beam platform was implemented to docment and analyze the wear micromechanisms on a laser-surface textured(LST)hardmetal(HM)tool.In particular,changes in surface and microstructural integrity of the laser-sculptured pyramids(effective cutting microfeatures)were characterized after testing the LST-HM tool against a steel workpiece in a workbench designed to simulate an external honing process.It was demonstrated that:(1)laser-surface texturing does not degrade the intrinsic surface integrity and tool effectiveness of HM pyramids;and(2)there exists a correlation between the wear and loading of shaped pyramids at the local level.Hence,the enhanced performance of the laser-textured tool should consider the pyramid geometry aspects rather than the microstructure assemblage of the HM grade used,at least for attempted abrasive applications.展开更多
文摘Device miniaturization is an emerging advanced technology in the 21 st century. The miniaturiza- tion of devices in different fields requires production of micro- and nano-scale components. The features of these components range from the sub-micron to a few hundred microns with high tolerance to many engineering materi- als. These fields mainly include optics, electronics, medicine, bio-technology, communications, and avionics. This paper reviewed the recent advances in micro- and nano-machining technologies, including micro-cutting, micro-electrical-discharge machining, laser micro-machin- ing, and focused ion beam machining. The four machining technologies were also compared in terms of machining efficiency, workpiece materials being machined, minimum feature size, maximum aspect ratio, and surface finish.
基金Project supported by the National Natural Science Foundation of China(Nos.11232008,11227801 and 11302082)the Doctoral Program of University of Jinan(No.XBS1307)
文摘In this study, the residual strain of a thin conductive metal wire on a polymer substrate after electrical failure is measured with SEM moir′e. Focused ion beam(FIB) milling is applied to fabricate micron moir′e gratings on the surfaces of constantan wires and the random phase shifting technique is used to process moir′e fringes. The virtual strain method is briefly introduced and used to calculate the real strain of specimens. In order to study the influence of a defect on the electrical failure of the constantan wire, experiments were conducted on two specimens, one with a crack, while the other one without any crack. By comparing the results, we found that the defect makes the critical beam current of electrical failure decrease. In addition, the specimens were subjected to compression after electrical failure, in agreement with the observed crack closure of the specimen. The successful results demonstrate that the moir′e method is effective to characterize the full-field deformation of constantan wires on the polymer membrane, and has a good potential for further application to the deformation measurement of thin films.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0200400 and 2016YFA0200800)the National Natural Science Foundation of China(Grant Nos.61888102,12074420,and 11674387)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)Key Research Program of Frontier Sciences,Chinese Acdemy of Sciences(Grant No.QYZDJ-SSWSLH042).
文摘Three-dimensional(3D)vertical architecture transistors represent an important technological pursuit,which have distinct advantages in device integration density,operation speed,and power consumption.However,the fabrication processes of such 3D devices are complex,especially in the interconnection of electrodes.In this paper,we present a novel method which combines suspended electrodes and focused ion beam(FIB)technology to greatly simplify the electrodes interconnection in 3D devices.Based on this method,we fabricate 3D vertical core-double shell structure transistors with ZnO channel and Al_(2)O_(3) gate-oxide both grown by atomic layer deposition.Suspended top electrodes of vertical architecture could be directly connected to planar electrodes by FIB deposited Pt nanowires,which avoid cumbersome steps in the traditional 3D structure fabrication technology.Both single pillar and arrays devices show well behaved transfer characteristics with an Ion/Ioff current ratio greater than 106 and a low threshold voltage around 0 V.The ON-current of the 2×2 pillars vertical channel transistor was 1.2μA at the gate voltage of 3 V and drain voltage of 2 V,which can be also improved by increasing the number of pillars.Our method for fabricating vertical architecture transistors can be promising for device applications with high integration density and low power consumption.
基金supported by the German Research Foundation(DFG)within the Individual Research Grant(425923019)“Laser Surface Textured Cemented Carbides for Application in Abrasive Machining Processes”.
文摘The combined use of focused ion beam(FIB)milling and field-emission scanning electron microscopy inspection(FESEM)is a unique and successful approach for assessment of near-surface phenomena at specific and selected locations.In this study,a FIB/FESEM dual-beam platform was implemented to docment and analyze the wear micromechanisms on a laser-surface textured(LST)hardmetal(HM)tool.In particular,changes in surface and microstructural integrity of the laser-sculptured pyramids(effective cutting microfeatures)were characterized after testing the LST-HM tool against a steel workpiece in a workbench designed to simulate an external honing process.It was demonstrated that:(1)laser-surface texturing does not degrade the intrinsic surface integrity and tool effectiveness of HM pyramids;and(2)there exists a correlation between the wear and loading of shaped pyramids at the local level.Hence,the enhanced performance of the laser-textured tool should consider the pyramid geometry aspects rather than the microstructure assemblage of the HM grade used,at least for attempted abrasive applications.