基于SURF(Speeded Up Robust Features)特征点提取是目前比较流行的图像配准方法.本文在SURF基础上,提出一种基于分块策略的改进方法:首先采用分水岭分割法确定图像的分块数量,然后对图像进行分块,每个子块提取一定数量的特征点,以便实...基于SURF(Speeded Up Robust Features)特征点提取是目前比较流行的图像配准方法.本文在SURF基础上,提出一种基于分块策略的改进方法:首先采用分水岭分割法确定图像的分块数量,然后对图像进行分块,每个子块提取一定数量的特征点,以便实现特征点的均匀提取;再通过稀疏特征树法找出匹配的特征点对;最后用RANSAC算法剔除错误匹配特征点对,同时计算参考图像与待配准图像的变换关系.实验表明,该方法能够高效、快速地解决遥感图像的自动配准问题.展开更多
文摘基于SURF(Speeded Up Robust Features)特征点提取是目前比较流行的图像配准方法.本文在SURF基础上,提出一种基于分块策略的改进方法:首先采用分水岭分割法确定图像的分块数量,然后对图像进行分块,每个子块提取一定数量的特征点,以便实现特征点的均匀提取;再通过稀疏特征树法找出匹配的特征点对;最后用RANSAC算法剔除错误匹配特征点对,同时计算参考图像与待配准图像的变换关系.实验表明,该方法能够高效、快速地解决遥感图像的自动配准问题.
基金国家重点基础研究发展计划项目(2007CB714406)国家科技支撑计划(2008BAC34B03)+2 种基金中国科学院知识创新工程青年人才领域前沿项目专项项目资助中国科学院遥感应用研究所遥感科学国家重点实验室资助项目欧盟项目CEOP-AEGIS(FP7-ENV-2007-1 Grant nr.212921)