期刊文献+

基于控制点库的SIFT多源影像自动配准方法 被引量:9

Automatic image registration based on GCP database with SIFT algorithm
原文传递
导出
摘要 本文提出了一种基于控制点库的SIFT多源大幅遥感影像自动配准方法,该方法首先设计并建立控制点影像库;然后采用地理坐标粗定位及SIFT算法自动精确查找同名控制点;利用影像分块迭代最小二乘法拟合,去除错同名控制点;最后运用多项式模型完成影像配准。以环境减灾小卫星CCD及近红外、QuickBird 2.4m及0.6m、TM及印度星(irs-p6)、LiDAR强度图等影像为实验对象。结果表明该方法能有效处理大幅遥感影像,同时针对多源遥感影像其配准精度达到亚像素级(RMS 0.617~0.934)。 The automatic image registration based on GCP database with SIFF algorithm was studied in this paper. The method designed and builded a GCP database to store information of GCP images firstly. Then the algorithm approximately located the GCP images in the warp images by geographic location. SI^l~ algorithm was used to locate the position of the GCP images accurately. After all the GCP points were obtained, the algorithm used least square method to reduce the wrong GCP points. Finally, the polynomial model and the correct GCP points were used to warp the images. Large remote sensing images (HJ-1A / B, 875M) and Quick Bird / TM / LiDAR etc. images were used to test the method. It indicated that the method could process the large images effectively and the precision of warped image was sub pixel (RMS 0. 617 -0. 934) .
出处 《测绘科学》 CSCD 北大核心 2011年第4期35-38,共4页 Science of Surveying and Mapping
基金 国家重点基础研究发展计划项目(2007CB714406) 国家科技支撑计划(2008BAC34B03) 中国科学院知识创新工程青年人才领域前沿项目专项项目资助 中国科学院遥感应用研究所遥感科学国家重点实验室资助项目 欧盟项目CEOP-AEGIS(FP7-ENV-2007-1 Grant nr.212921)
关键词 影像配准 自动配准 GCP库 SIFT 最小二乘法 image registration automatic registration GCP database SIFT least square method
  • 相关文献

参考文献14

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 2张剑清等编著..摄影测量学[M].武汉:武汉大学出版社,2003:227.
  • 3Harris C G, StephensM J. A Combined Corner and Edge Detector [ C ] //Proceedings Fourth Alvey Vision Con- ference. Manchester, 1988. 被引量:1
  • 4Smith SM, Brady JM. SUSAN--A new approach to low level image processing [J] . Journal of Vision, 1997, 23 (1) . 被引量:1
  • 5骞森,朱剑英.基于改进的SIFT特征的图像双向匹配算法[J].机械科学与技术,2007,26(9):1179-1182. 被引量:44
  • 6Lowe D G. Distinctive image features from scale-invariant key points [ J ] . International Journal of Computer Vi- sion, 2004, 60 (2) . 被引量:1
  • 7Lowe D G. Object recognition from local seale-invariant features [ C ] //International Conferenee on Computer Vision, Corfu, Greeee, Se P1999: 1150-1157. 被引量:1
  • 8张继贤,马瑞金.图形图像控制点库及应用[J].测绘通报,2000(1):15-17. 被引量:18
  • 9赵英时等编著..遥感应用分析原理与方法[M].北京:科学出版社,2003:478.
  • 10Rafael C Gonalez,Richard E Woods.数字图像处理[M].阮秋琦,阮宇智,等译.北京:电子工业出版社,2004. 被引量:1

二级参考文献33

  • 1[3]Kuglin C D,Hines D C.The Phase Correlation Image alignment method[C].IEEE Conference on Cybernetics and Society,New York,1975:163-165. 被引量:1
  • 2[4]David G Lowe.Object Recognition from Local Scale-Invariant Features[C].7th International Conference on Computer Vision,1999:1150-1157. 被引量:1
  • 3[5]David G Lowe.Distinctive Image Features from Scale-Invariant Interest Points[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 4[6]Harris C Stephens.A Combined Corner and Edge Detector[J].4th Alvey Vision Conference.1988,60(2):147-151. 被引量:1
  • 5[7]Faugeras O,Robert L.What can two images tell us about the third one[C].Proceedings of the Europe Conference on Computer Vision,Sweden,1994. 被引量:1
  • 6[8]Koenderink J.The structure of images[J].Biological Cybernetics,1984,50:363-396. 被引量:1
  • 7[9]Lindeberg T.Scale-Space for discrete Signals[J].IEEE Transactions PAMI,1980,207:187-217. 被引量:1
  • 8[10]Babaud J,Witkin A P,Baudin Metal.Uniqueness of the Gaussian kernel for scale-space filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,8(1):26-33. 被引量:1
  • 9毋河海.地图数据库系统[M].北京:测绘出版社,1991.. 被引量:43
  • 10孙家,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997. 被引量:3

共引文献230

同被引文献86

引证文献9

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部